FINITE DIMENSIONAL GROUP RINGS

RALPH W. WILKERSON

Abstract. A ring is right finite dimensional if it contains no infinite direct sum of right ideals. We prove that if a group G is finite, free abelian, or finitely generated abelian, then a ring R is right finite dimensional if and only if the group ring RG is right finite dimensional. A ring R is a self-injective cogenerator ring if R^n is injective and RR is a cogenerator in the category of unital right R-modules; this means that each right unital R-module can be embedded in a direct product of copies of R. Let G be a finite group where the order of G is a unit in R. Then the group ring RG is a self-injective cogenerator ring if and only if R is a self-injective cogenerator ring. Additional applications are given.

1. Introduction. Let R always denote an associative ring with 1 and G a group with order $|G|$. The group ring of a group G and a ring R is the ring of all formal sums $\sum_{g \in G} r(g)g$ with $r(g) \in R$ and with only finitely many nonzero $r(g)$ [7]. For a right finite dimensional ring R, there exists an integer n such that R contains a direct sum of n-summands and the number of summands of any other direct sum in R is at most n. In this case, we write $\dim R = n$. The ring R will be considered as a right R-module R_R and by finite dimensional we shall mean right finite dimensional.

It is known that if H is any semigroup with 1, then RH is a ring. In particular, the polynomial ring is a special case of this construction. Shock has shown that the right finite dimensional property carries over to polynomial rings [10]. This paper extends this result to group rings.

If R is a subring of Q and the identity of R is also the identity of Q, then R is a right order in Q if

(a) every nonzero divisor of R is a unit in Q, and

(b) every element of Q can be written in the form of cd^{-1} where c and d are in R and d is a nonzero divisor of R. We prove that if G is a finite group, then R is a right order in a self-injective cogenerator ring and the order of no finite normal subgroup of G is a zero-divisor in R.

Presented to the Society, January 28, 1973; received by the editors February 27, 1973.

Key words and phrases. Group ring, injective, order, cogenerator, rationally closed, dense right ideal, complete ring of quotients, right finite dimensional.

1 This article is part of the author's doctoral thesis which was written under the direction of Professor Robert C. Shock.
if and only if RG is a right order in a self-injective cogenerator ring. Let G be a free abelian group. If R is a right order in a right Artinian ring then RG is a right order in a right Artinian ring.

2. Finite dimensional group rings. It is always true that if RG is finite dimensional then R is finite dimensional; however, the converse is not in general true.

Example 2.1. There exists a finite dimensional ring R and a group G such that the group ring RG is not finite dimensional. Let R be a field of characteristic zero and $G=\mathbb{Z}/p\mathbb{Z}$ (for all prime p), where C_p is a cyclic group of order p. Then RG is not finite dimensional. This follows from the fact that RG is regular and the right ideal $\omega(C_p)$ of RG generated by $\{1-h|h \in C_p\}$ is principal [2]. So the question naturally arises as to when the group ring RG is finite dimensional.

Proposition 2.2 (Shock [10]). A ring R is finite dimensional if and only if the polynomial ring $R[x_1, x_2, \cdots]$ is finite dimensional. Furthermore, $\dim R=\dim R[x_1, x_2, \cdots]$.

Proof. See Theorem 2.6 of [10].

Let R be a subring of S, then we call S a ring of right quotients of R, if for every $0 \neq s \in S$ and for every $s' \in S$, there exists $r \in R$ such that $sr \neq 0$ and $s'r \in R$. Let $Q(R)$ denote the complete ring of quotients of R. It is well known that R is finite dimensional if and only if $Q(R)$ is, and in this case $\dim R=\dim Q(R)$. It is also known that if S is a ring of right quotients of R then $Q(R)$ is the complete ring of quotients of S [4].

Theorem 2.3. Let G be an infinite cyclic group, then R is finite dimensional if and only if RG is finite dimensional. Furthermore, $\dim R=\dim RG$.

Proof. Let S be a multiplicative semigroup isomorphic to the non-negative integers. Then S is a semigroup with identity and is generated by the nonnegative powers of some element, say g. By Proposition 2.2, it is clear that RS is finite dimensional, since RS is just a polynomial ring in the variable g. Now S can be embedded in an infinite cyclic group G, which is generated by all powers of g. We need only show that RG is a ring of right quotients of RS. Let $r_1, r_2 \in RG$ with

\[
0 \neq r_1 = r_1(g_1)g_1 + \cdots + r_1(g_n)g_n = r_1(g_1)g^{a_1} + \cdots + r_1(g_n)g^{a_n}
\]

and

\[
r_2 = r_2(h_1)h_1 + \cdots + r_2(h_m)h_m = r_2(h_1)g^{b_1} + \cdots + r_2(h_m)g^{b_m}.
\]
Let $k = \max\{|a_i|, |b_j|\}$ for all $1 \leq i \leq n$ and $1 \leq j \leq m$. It is clear that $r = g^k \in RS$, $r_1 r \neq 0$, and $r a r' \in RS$. Hence, RG is finite dimensional. Also, $\dim Q(RS) = \dim RS = \dim R$ shows that $\dim R = \dim RG$. The converse is clear.

A **free abelian group** is a group which is a direct sum of infinite cyclic groups.

Corollary 2.4. Let G be a free abelian group, then R is finite dimensional if and only if RG is finite dimensional. Furthermore, $\dim R = \dim RG$.

Proof. Let $H = S_1 \oplus S_2 \oplus \cdots$ where each S_i is a multiplicative semigroup isomorphic to the nonnegative integers. If R is finite dimensional then RH is finite dimensional by Proposition 2.2. Let $G = G_1 \oplus G_2 \oplus \cdots$, where S_i is embedded in the infinite cyclic group G_i, and now show that RG is a ring of right quotients of RH. The details are omitted. The converse and inequalities follow easily.

Lemma 2.5. For a finite group G, the group ring RG is finite dimensional if and only if the ring R is finite dimensional. Also, $\dim R \leq \dim RG \leq \dim R \cdot |G|$.

Proof. Let G be finite, then RG_R is R-isomorphic to a direct sum of $|G|$ copies of the finite dimensional R-module R. Hence, RG is a finite dimensional R-module and therefore a finite dimensional RG-module. The converse and inequalities are clear.

Theorem 2.6. Let G be a finitely generated abelian group, then R is finite dimensional if and only if RG is finite dimensional. If H is the torsion subgroup of G, then $\dim R \leq \dim RG \leq \dim R \cdot |H|$.

Proof. If G is a finitely generated abelian group then $G \cong G_1 \oplus G_2 \oplus \cdots \oplus G_n \oplus H$ where $|H| < \infty$ and G_i for $1 \leq i \leq n$ is an infinite cyclic group. As in [2, p. 673], we define $A_1 = RG_1$, $A_2 = A_1 G_2$, \cdots, $A_n = A_{n-1} G_n$, and $A = A_n H$; clearly $RG \cong A$. By Corollary 2.4 and Lemma 2.5, we see by induction that A is finite dimensional and consequently RG is finite dimensional. The converse and inequalities follow easily.

3. **Applications.** Let $Z(R)$ denote the **right singular ideal** of R (4).

Lemma 3.1. Let G be a free abelian group, then $Z(RG) = Z(R)G$.

Proof. The proof uses the same technique as the proof of Theorem 2.7 of [10].

Proposition 3.2 (Connell, [2]). The group ring RG is semiprime if and only if R is semiprime and the order of no finite normal subgroup is a zero-divisor in R.

Proof. See the appendix of [4].
It is well known that a semiprime Goldie ring is a semiprime, finite dimensional ring with zero singular ideal.

Corollary 3.3. Let G be a free abelian group. A ring R is a semiprime Goldie ring if and only if RG is a semiprime Goldie ring.

Proof. The proof is immediate.

Proposition 3.4 (Burgess, [1]). If $Z(RG)=0$, then $Z(R)=0$ and the order of every finite normal subgroup of G is a nonzero-divisor in R.

Proof. See Theorem 4.8 of [1].

A **locally normal group** is one in which every finite subset is contained in a finite normal subgroup.

Proposition 3.5 (Burgess, [1]). Assume that G is locally normal and the order of every finite normal subgroup of G is a nonzero-divisor in R. If $Z(R)=0$, then $Z(RG)=0$.

Proof. See 4.9 of [1].

Corollary 3.6. Let G be a finitely generated abelian group. Then R is a semiprime Goldie ring and the order of every finite normal subgroup of G is a nonzero-divisor in R if and only if RG is a semiprime Goldie ring.

Proof. The proof is immediate using the construction in the proof of Theorem 2.6.

A right ideal of a ring R is said to be **essential** if it has nonzero intersection with every nonzero right ideal of R. A right ideal D of R is **dense** if for every $0 \neq r_1 \in R$ and for every $r_2 \in R$ there exists $r \in R$ such that $r_1 r \neq 0$ and $r_2 r \in D$. We denote the Jacobson radical of R by $\text{Rad } R$. A right ideal A is said to be **small** if for every right ideal B, $A + B = R$ implies $B = R$. It is known that A is small if and only if $A \subseteq \text{Rad } R$.

The following remarks are well known.

Remark 3.7. A right ideal D is dense in R if and only if DG is dense in RG.

Remark 3.8. A right ideal L is essential in R if and only if LG is essential in RG.

A right ideal B is **rationally closed** in R if $x^{-1}B = \{ r \in R | xr \in B \}$ is not dense for all $x \in R - B$. Let $I(R)$ denote the injective hull of R, then B is rationally closed in R if there exists a subset S of $I(R)$ such that $B = \{ x \in R | Sx = 0 \}$ [8].

Lemma 3.9. A right ideal K of R is rationally closed in R if and only if KG is rationally closed in RG.
Proof. If K is rationally closed then there exists a subset $S \subseteq I(R)$ such that $K = \{ x \in R | Sx = 0 \}$. We will show that $KG = \{ x \in RG | SGx = 0 \}$. Let $x \in KG$ then $SGx = 0$ since $Sk = 0$ for all $k \in K$. Hence $x \in \{ x \in RG | SGx = 0 \}$. Now suppose $0 \not= x \notin KG$. We want to show there exists $y \in SG$ such that $yx \neq 0$. Let $x = r_1(g_1)g_1 + \cdots + r_n(g_n)g_n$, since $x \notin KG$ there exists $r_i(g_i)$ such that $r_i(g_i) \notin K$. K is rationally closed so there exists $0 \neq s \in S$ such that $sr_i(g_i) \neq 0$. Hence, $sx \neq 0$ implies $x \notin \{ x \in RG | SGx = 0 \}$.

Conversely, suppose K is not rationally closed in R, then there exists $x \in R - K$ such that $x^{-1}K$ is dense in R. Thus $(x^{-1}K)G = x^{-1}KG$ is dense in RG and hence KG is not rationally closed in RG.

Proposition 3.10 (Renault, [6]). The group ring RG is self-injective if and only if R is self-injective and G is finite.

Proof. See [6].

Lemma 3.11 (Shock, [9]). Let R be a self-injective ring. Then R is a cogenerator if and only if R is right finite dimensional and $Z(R)$ is rationally closed.

Proof. See Proposition 2 of [9].

If R is a self-injective ring then $Z(R) = \text{Rad } R$ [4]. It is known that if R is self-injective and finite dimensional then $R/\text{Rad } R$ is completely reducible.

Theorem 3.12. Let G be a finite group where the order of G is a unit in R, then R is a self-injective cogenerator ring if and only if RG is a self-injective cogenerator ring.

Proof. Let R be a self-injective cogenerator ring. It is clear that RG is finite dimensional and injective. By Lemma 3.11, we need only show that $Z(RG)$ is rationally closed. It is clear that if R contains no proper dense right ideals then every right ideal is rationally closed and conversely. So, we shall show that RG contains no proper dense right ideals. Let D be a dense right ideal of RG. Then $D + Z(R)G$ is dense and by Proposition 5.1 of [8], $(D + Z(R)G)/Z(R)G$ is dense in $RG/Z(R)G$ since $Z(R)G$ is rationally closed. Clearly, $RG/Z(R)G$ and $R/Z(R)$ are completely reducible. Therefore, $(R/Z(R))G \simeq RG/Z(R)G$ is completely reducible [2] and thus $RG/Z(R)G$ contains no proper dense right ideals. Hence, $D + Z(R)G = RG$. But $Z(R)G \subseteq Z(RG) = \text{Rad } RG$ implies $Z(R)G$ is small. Hence, $D = RG$. Conversely, let D be dense in R, $D \neq R$, then DG is dense in RG and $DG \neq RG$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Lemma 3.13 (Shock, [9]). Suppose that $Z(Q(R))$ is the Jacobson radical of $Q(R)$ and is rationally closed. If $Q(R)/Z(Q(R))$ is a completely reducible ring and $R/Z(R)$ is semiprime, then R is a right order in $Q(R)$.

Proof. See Proposition 4 of [9].

Theorem 3.14. Let G be a finite group, then R is a right order in a self-injective cogenerator ring and the order of no finite normal subgroup of G is a zero-divisor in R if and only if RG is a right order in a self-injective cogenerator ring.

Proof. Let R be a right order in a self-injective cogenerator ring Q, then $Q=Q(R)$. By 3.6 of [1], we have $Q(RG)\cong Q(R)G$ and thus by Theorem 3.12 $Q(RG)$ is a self-injective cogenerator ring. It is now clear that both $Q(RG)/Z(Q(RG))$ and $Q(R)/Z(Q(R))$ are completely reducible. Also, it is clear that $Q(R)G/Z(Q(R))G$ is completely reducible and that $RG/Z(R)G$ is semiprime. By Lemma 3.13 we need only to show that $RG/Z(RG)$ is semiprime. To do this, we first show that $Z(R)G=Z(RG)$. It is sufficient to show that $Z(Q(RG))=Z(Q(R))G$ since $Z(RG)=Z(Q(RG))\cap RG=Z(Q(R)G)\cap RG=Z(Q(R))G\cap RG=Z(R)G$. Now $(Q(R)/(Z(Q(R))))G\cong Q(R)G/Z(Q(R))G\cong Q(RG)/Z(Q(RG))$. Recall $Z(Q(R))G\subseteq Z(Q(RG))=\text{Rad }Q(RG)$. Hence, $Z(Q(R))G=Z(Q(RG))$ since $Q(RG)/Z(Q(RG))G$ is completely reducible. The converse follows similarly.

In [12] Smith showed that if G is a poly- (cyclic or finite) group and R is a right order in a right Artinian ring then RG is a right order in a right Artinian ring. We extend this result to a class of group rings, where G need not be poly- (cyclic or finite), using a method of Small [11].

Theorem 3.15. Let G be a free abelian group. If R is a right order in a right Artinian ring then RG is a right order in a right Artinian ring.

Proof. It is clear that $\text{rad }RG=(\text{rad }R)G$ when G is free abelian. We now use the same argument as in Theorem 3.6 of [10].

References

Department of Mathematics, Southern Illinois University, Carbondale, Illinois 62901