THE TANGENT BUNDLE OF AN H-MANIFOLD

JEROME KAMINKER

Abstract. By an H-manifold we mean a closed, smooth (C^∞) manifold which is an H-space. It is proved that the tangent sphere bundle of an H-manifold is fiber homotopy equivalent to the trivial bundle. This improves a result of W. Browder and E. Spanier which proved only the stable fiber homotopy triviality. As an application, we observe that a 1-connected, finite, CW complex, which is an H-space (and, hence, an n-dimensional Poincaré complex, for some n) is of the homotopy type of a parallelizable manifold, if $n \neq 4k + 2$.

1. Introduction. Let M^m be a closed, smooth, m-dimensional manifold which admits an H-space product, $m: M \times M \to M$, with unit e. We will call M an H-manifold. In [4], W. Browder and E. Spanier prove that the tangent sphere bundle of M, T_0M, is stably fiber homotopy trivial. The purpose of this note is to prove that T_0M is actually fiber homotopy trivial.

This is the strongest assertion one can make in general, in the following sense: there is an example of an H-manifold, M, with a nonzero rational Pontrjagin class [1]. This means that TM is not even stably trivial as a Euclidean bundle [14].

2. Main results. In [11], J. Wagoner and R. Benlian prove that the fiber homotopy type of the tangent sphere bundle of a smooth manifold is a homotopy type invariant.

We observe, first, that the techniques of [11], also prove the following:

Theorem 1 (Wagoner and Benlian). Let W^k and N^n be closed, smooth manifolds, with $2n \leq k$, and $n \geq 3$. Let f and g be embeddings of N into W. Suppose there is a homotopy equivalence, $F: W \to W$, such that $Ff \simeq g$.

Received by the editors January 5, 1972 and, in revised form, February 5, 1973.

Key words and phrases. H-space, fiber homotopy type, tangent sphere bundle, parallelizable manifold.

American Mathematical Society 1973
Assume, further, that f and g induce monomorphisms on the fundamental group. Then the normal sphere bundles of f and g are fiber homotopy equivalent.

Proof. (For completeness, we state the two main ideas of the proof. The details of the proof are identical with those of Proposition 1 of [11].) First one gets, via codimension one surgery [12], and an embedding theorem of Haefliger [8], an h-cobordism V^{k+1}, with $\partial V = W \cup W_1$, and an embedding $g_1: N \rightarrow W_1$, such that f is homotopic to g_1 in V. By the methods of [9], it is shown that the normal sphere bundles of g_1 and g are fiber homotopy equivalent.

The second step is to observe that f and g_1 extend to an immersion of $N \times I$ into V, so that their normal sphere bundles are equivalent. This is shown by putting the homotopy between f and g_1 into general position and using a theorem of Whitney [13], to redefine it in neighborhoods of the singular points, so that the new homotopy is an immersion of $N \times I$ in V. We refer the reader to [11] for a more complete version.

The main result now follows easily.

Theorem 2. Let M^m be a connected, closed, smooth H-manifold. Then the tangent sphere bundle of M is fiber homotopy trivial.

Proof. We may assume $m \geq 3$, since the only closed connected H-manifolds of dimension 1 or 2 are S^1 and $S^1 \times S^1$, and they are parallelizable. Let $m : M \times M \rightarrow M$ be an H-space product, with unit e. Apply Theorem 1, with $W = M \times M$, $f : M \rightarrow M \times M$ defined by $f(x) = (x, e)$, $g : M \rightarrow M \times M$ the diagonal map, and $F : M \times M \rightarrow M \times M$ defined by $F(x, y) = (x, m(x, y))$. Note that the dimension hypotheses of Theorem 1 are satisfied, and F is a homotopy equivalence [15]. Moreover, $Ff = g$ and, both f and g induce monomorphisms on the fundamental group. Therefore, the normal sphere bundles of f and g are fiber homotopy equivalent. But, the normal bundle of g is the tangent bundle of M, and the normal bundle of f is trivial.

3. Remarks. (a) According to [4], [7], and [10], there is a single obstruction to the fiber homotopy triviality of the tangent sphere bundle of an H-manifold. In even dimensions it vanishes since the Euler characteristic of a closed H-manifold is zero (unless it is a point) [10]. In odd dimensions, the obstruction vanishes if the mod 2 Kervaire semicharacteristic of M

$$
\chi^*(M) \equiv \sum_{i=0}^{[k/2]} \dim H^i(M; \mathbb{Z}_2) \mod 2,
$$

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
is zero [7]. The geometric proof in Theorem 1 and Theorem 2 show this to be the case.

(b) If M is 1-connected, with dimension greater than five, and an H-space, but only a PL or topological manifold, then the tangent micro-bundle of M is fiber homotopy trivial.

4. Application. Although it is known that a finite CW complex, X, which is an H-space, is not necessarily homotopy equivalent to a compact Lie group, we can use Theorem 2 to get a reasonably nice representative of its homotopy type.

According to [2], there exists an n such that X is an n dimensional Poincaré complex. From [4], we see that the product vector bundle over X is reducible and is therefore stably fiber homotopy equivalent to the Spivak normal fibration. In this situation, simply connected surgery yields:

Theorem 3. Let X be a 1-connected finite H-complex. Suppose X has dimension n as a Poincaré complex, and $n \neq 4k + 2$. Then X is of the homotopy type of a parallelizable manifold.

Proof. First assume $n \geq 5$. It will follow from [3] that X is homotopy equivalent to a π-manifold, M, if the surgery obstruction vanishes when $n=4k$. But this is equivalent to the index of X, $I(X)$, being zero, which is so because X is an H-space [6]. (This can be seen easily—for $I(X) = I(S_1 \times \cdots \times S_j)$, each S_j an odd dimensional sphere. But the index is multiplicative and zero on odd dimensional manifolds.) Thus, the obstruction vanishes. By Theorem 2, the tangent sphere bundle of M is fiber homotopy trivial. By Sutherland [10], this is sufficient to make M parallelizable.

For $1 \leq n \leq 4$, we note that X will be a 1-connected finite complex with vanishing Euler characteristic. None can exist in dimensions 1 and 2. In dimension 3 or 4, X would be a homology sphere. But a homology 4-sphere has the wrong cohomology for an H-space, and by Browder [5], a 1-connected homology 3-sphere is of the homotopy type of S^3, a parallelizable manifold.

Bibliography

DEPARTMENT OF MATHEMATICS, INDIANA UNIVERSITY, BLOOMINGTON, INDIANA 47401