Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Some combinatorial theorems equivalent to the prime ideal theorem


Author: R. H. Cowen
Journal: Proc. Amer. Math. Soc. 41 (1973), 268-273
MSC: Primary 04A20; Secondary 02K99
DOI: https://doi.org/10.1090/S0002-9939-1973-0319769-3
MathSciNet review: 0319769
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Some useful combinatorial selection lemmas are shown to be directly equivalent to the prime ideal theorem for boolean algebras.


References [Enhancements On Off] (What's this?)

  • [1] R. H. Cowen, A new proof of the compactness theorem for propositional logic, Notre Dame J. Formal Logic 11 (1970), 79-80. MR 43 #4624. MR 0278898 (43:4624)
  • [2] -, A short proof of Rado's lemma, J. Combinatorial Theory 12 (1972), 299-300. MR 0297581 (45:6635)
  • [3] N. G. de Bruijn and P. Erdös, A colour problem for infinite graphs and a problem in the theory of relations, Nederl. Akad. Wetensch. Proc. Ser. A 54 = Indag. Math. 13 (1951), 369-373. MR 13, 763. MR 0046630 (13:763g)
  • [4] W. H. Gottschalk, Choice functions and Tychonoff's theorem, Proc. Amer. Math. Soc. 18 (1967), 113-115. MR 0203680 (34:3529)
  • [5] J. L. Kelly, General topology, Van Nostrand, Princeton, N.J., 1955. MR 16, 1136. MR 0070144 (16:1136c)
  • [6] J. Łoś and C. Ryll-Nardzewski, Effectiveness of the representation theory for Boolean algebras, Fund. Math. 41 (1954), 49-56. MR 16, 439. MR 0065527 (16:439g)
  • [7] E. Mendelson, Introduction to mathematical logic, Van Nostrand, Princeton, N.J., 1964. MR 29 #2158. MR 0164867 (29:2158)
  • [8] J. Mycielski, Two remarks on Tychonoff's product theorem, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 12 (1964), 439-441. MR 35 #6566. MR 0215731 (35:6566)
  • [9] A. Robinson, Introduction to model theory and to the metamathematics of algebra, North-Holland, Amsterdam, 1963. MR 27 #3533. MR 0153570 (27:3533)
  • [10] R. Rado, Axiomatic treatment of rank in infinite sets, Canad. J. Math. 1 (1949), 337-343. MR 11, 238. MR 0031993 (11:238c)
  • [11] -, A selection lemma, J. Combinatorial Theory Ser. A 10 (1971), 176-177. MR 42 #5803. MR 0270920 (42:5803)
  • [12] E. S. Wolk, On theorems of Tychonoff, Alexander and R. Rado, Proc. Amer. Math. Soc. 18 (1967), 113-115. MR 34 #3529. MR 0203680 (34:3529)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 04A20, 02K99

Retrieve articles in all journals with MSC: 04A20, 02K99


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1973-0319769-3
Keywords: Rado's lemma, selection lemma, valuation lemma, prime ideal theorem
Article copyright: © Copyright 1973 American Mathematical Society

American Mathematical Society