BERNOULLI SHIFTS ARE DETERMINED
BY THEIR FACTOR ALGEBRAS

PAUL C. SHIELDS

We shall show that, if S is an invertible measure-preserving trans-
mation of the unit interval with the same factor algebras as a Bernoulli shift
T, then S is isomorphic to T. This answers affirmatively a conjecture by
G.-C. Rota in 1968.

Definitions. A transformation T is an invertible measure-preserving
transformation of the unit interval X with Lebesgue sets Σ and Lebesgue
measure μ. T is called ergodic if there are no T-invariant sets $A \in \Sigma$ with
$0 < \mu(A) < 1$. A factor algebra of T is a complete σ-algebra $\Sigma_1 \subseteq \Sigma$ such
that $T\Sigma_1 = T^{-1}\Sigma_1 = \Sigma_1$. A partition P is a countable disjoint collection of
measureable sets whose union is X. The join of P and Q is $P \vee Q =
\{ p \cap q | p \in P, q \in Q \}$ and $\bigvee_n T^i P = T^k P \vee T^{k+1} P \vee \cdots \vee T^n P$. Also, $\bigvee_{-\infty}^\infty T^i P$
denotes the smallest factor algebra containing P. P is a generator for T
if $\bigvee_{-\infty}^\infty T^i P = \Sigma$ and $\{ T^i P \}$ is independent if, for each $n > 0$, P
is independent of $\bigvee_{1}^n T^i P$. T is a Bernoulli shift if it has a generator P
such that $\{ T^i P \}$ is independent.

The entropy $H(P) = - \sum_{p \in P} \mu(p) \log \mu(p)$, the relative entropy

$$H(T, P) = \lim_{n \to \infty} H\left(\bigvee_{1}^n T^i P \right)$$

and $H(T) = \sup P H(T, P)$.

We have

1. $H(T, P) \leq H(P)$ with equality iff $\{ T^i P \}$ is independent.
2. If P is a generator for T, then $H(T) = H(T, P)$.
3. If T is ergodic and $\epsilon > 0$, there is a generator P such that $H(P) \leq
H(T) + \epsilon$.

The reader is referred to [3] for details about entropy. The result (3)
is due to Rohlin and is the primary tool in our proof of the following
theorem.

Theorem. If S has the same factor algebras as a Bernoulli shift T, then
S is isomorphic to T.
Proof. We begin by making two elementary observations:

4. S is ergodic.
5. $\bigvee_{-\infty}^{\infty} T^i P = \bigvee_{-\infty}^{\infty} S^i P$ for any P.

To prove (4), note that, if $SA=A$, then $\{\Phi, A, X-A, X\}$ is a factor algebra of S, hence of T. Since T^2 is ergodic, this implies that $\mu(A)$ is 0 or 1. The result (5) follows from the fact that P is contained in the factor algebra $\bigvee_{-\infty}^{\infty} T^i P$ of T, hence so is $\bigvee_{-\infty}^{\infty} S^i P$.

We now prove

6. $H(S) = H(T)$.

First use (3) to choose a generator P for S such that $H(P) \leq H(S) + \varepsilon$. P must be a generator for T, from (5), and (1) and (2) give

$$H(T) \leq H(P) \leq H(S) + \varepsilon.$$

Now interchange the roles of S and T to obtain (6).

To complete the proof of the theorem, choose a generator P for T such that $\{T^i P\}$ is independent. We then have $H(T) = H(T, P) = H(P)$, and P is a generator for S. Therefore,

$$H(S) = H(S, P) \leq H(P) = H(T) = H(S),$$

so (1) implies that $\{S^i P\}$ is independent.

Remarks. 1. The result (6) only uses the fact that T^2 is ergodic and can be easily proved assuming only that T is ergodic.

2. Any two irrational rotations of the unit circle have the same factor algebras [1].

3. If T is a K-automorphism [3], then S must also be a K-automorphism. However, since there is a K-automorphism T which is not isomorphic to T^{-1} (see [2]), the theorem is false for K-automorphisms.

References

