RECAPTURING A HOLOMORPHIC FUNCTION ON AN ANNULUS FROM ITS MEAN BOUNDARY VALUES

CHIN-HUNG CHING AND CHARLES K. CHUI

Abstract. Let D be an annulus in the complex plane with closure \overline{D} and boundary ∂D. We prove that a function f, holomorphic in D with $C^{1+\epsilon}(\partial D)$ boundary data for some $\epsilon > 0$, is uniquely determined by its arithmetic means $s_n(f)$ and $s_{0n}(f)$ over equally spaced points on ∂D. We also give an explicit formula for recapturing f from its means $s_n(f)$ and $s_{0n}(f)$. Furthermore, we derive the relations between $s_n(f)$ and $s_{0n}(f)$ which are necessary and sufficient for the analytic continuability of f from D to the whole disc.

1. Introduction. Let $U : |z| < 1$ be the open unit disc and $T : |z| = 1$ be the unit circle in the complex plane. For an $\epsilon > 0$, we let $A^{1+\epsilon}(U)$ denote the class of all functions

$$f(z) = \sum_{n=0}^{\infty} a_n z^n$$

with $a_n = O(1/n^{1+\epsilon})$. If f is a continuous function on T, we consider the arithmetic means

$$s_n(f) = \frac{1}{n} \sum_{k=1}^{n} f(w_n^k),$$

$n = 1, 2, \ldots$, of f on T, where $w_n^k = \exp(i2\pi k/n)$ are the nth roots of unity. It is known (cf. [1]) that if $f \in A^{1+\epsilon}(U)$ then the sequence $\{s_n(f)\}$ uniquely determines f in $A^{1+\epsilon}(U)$. Also, an explicit representation of a function f in $A^{1+\epsilon}(U)$ in terms of the sequence $\{s_n(f)\}$ is given in [3]. In this paper, we establish these results for functions holomorphic in an annulus. Hence, one can explicitly recapture a function f, holomorphic in a simply connected or doubly connected domain G and continuous on the closure of G, from its “means” on the boundary ∂G of G, provided that an explicit conformal map of G onto the unit disc or an annulus can be found and has a sufficiently smooth extension to ∂G and that f is sufficiently smooth on ∂D.

Received by the editors May 1, 1972 and, in revised form, February 5, 1973.

Key words and phrases. Annulus, mean boundary values, Fourier coefficients, Riemann coefficients, Riemann series, Möbius function, holomorphic function.
Let $0<r_0<l$, and consider the annulus $D = \{z : r_0 < |z| < l\}$. For an $\varepsilon > 0$, we denote by $A^{1+\varepsilon}(D)$ the class of all functions $f(z) = \sum_{n=-\infty}^{\infty} a_n z^n$ such that for $n > 0$, $a_n = O(1/n^{1+\varepsilon})$ and $a_{-n} = O(r_0^n/n^{1+\varepsilon})$. If f is a function continuous on the boundary ∂D of D, we define (cf. [2]) the Riemann coefficients of f by

$$R_n(f) = s_n(f) - s_{\infty}(f) \quad \text{and} \quad R_0n(f) = s_{0n}(f) - s_{0\infty}(f),$$

where

$$s_{0n}(f) = \frac{1}{n} \sum_{k=1}^{n} f(r_0 w_k^n), \quad n = 1, 2, \ldots,$$

and

$$s_{\infty}(f) = \lim_{n \to \infty} s_n(f), \quad s_{0\infty}(f) = \lim_{n \to \infty} s_{0n}(f).$$

For all functions f "smooth" on ∂D, it is known (cf. [2]) that the Riemann coefficients $R_n(f)$ and $R_{0n}(f)$ have similar asymptotic decay as the Fourier coefficients $a_n(f)$ and $a_{0n}(f)$ respectively, where

$$a_n(f) = \frac{1}{2\pi} \int_0^{2\pi} f(e^{it}) e^{-int} dt \quad \text{and} \quad a_{0n}(f) = \frac{1}{2\pi} \int_0^{2\pi} f(r_0 e^{it}) e^{-int} dt.$$

It is also known (cf. [8, p. 6]) that f is holomorphic in D if and only if $a_{0n}(f) = a_n(f) r_0^n$ for all $n = 0, \pm 1, \cdots$. On the other hand, it is easy to see that for functions f holomorphic in D, $R_n(f)$ and $R_{0n}(f)$ are not related, since there are rational functions q_n and q_{0n} satisfying $R_m(q_n) = \delta_{m,n}$, $R_{0n}(q_m) = 0$, $R_m(q_{0n}) = 0$ and $R_{0m}(q_{0n}) = \delta_{m,n}$ for all m and n. However, we will give the relations between $R_n(f)$ and $R_{0n}(f)$ which are necessary and sufficient for functions $f \in A^{1+\varepsilon}(D)$ to be of class $A^{1+\varepsilon}(U)$.

2. Uniqueness, representation and analytical continuability theorems. We first establish the following uniqueness theorem.

Theorem 1. Let $f \in A^{1+\varepsilon}(D)$ for some $\varepsilon > 0$ satisfy

$$(1) \quad s_n(f) = 0 \quad \text{and} \quad s_{0n}(f) = 0$$

for $n = 1, 2, \cdots$. Then f is the zero function. Furthermore, for each positive integer n there exist two rational functions

$q_n(z) = \sum_{k=-n}^{n} a_k z^k, \quad q_{0n}(z) = \sum_{k=-n}^{n} a_0 z^k$

with $a_0 = a_{00} = 0$ such that

$s_m(q_n) = \delta_{m,n}, \quad s_{0m}(q_n) = 0, \quad s_m(q_{0n}) = 0$ and $s_{0m}(q_{0n}) = \delta_{n,m}$ for all $m, n = 1, 2, \cdots$.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
Proof. Since f is holomorphic in D, we write $f(z) = \sum_{n=-\infty}^{\infty} a_n z^n$ with
\[
a_0 = \frac{1}{2\pi i} \int_{|z|=1} f(z) \frac{dz}{z} = \lim_{n \to \infty} s_n(f) = 0.\]
Let $g(z) = \sum_{n=1}^{\infty} (a_n + a_{-n}) z^n$. Then $g \in A^{1+\epsilon}(U)$ and $s_n(g) = s_n(f) = 0$ for all $n=1, 2, \cdots$. Hence, we can conclude from a uniqueness theorem in [1] that $a_n + a_{-n} = 0$ for all n. Similarly, we also consider
\[
h(z) = \sum_{n=1}^{\infty} \left(a_n r_0^n + a_{-n} \frac{1}{r_0^n} \right) z^n,
\]
and conclude that $s_n(h) = s_0^n(f)$, $n=1, 2, \cdots$, and hence that $a_n r_0^n + a_{-n} r_0^{-n} = 0$ for all n. Since $0 < r_0 < 1$, it is clear that $a_n = 0$ for all n.

Next, we prove the existence of q_n. The proof of the existence of q_0n is similar. Since $s_m(q_n) = s_m(q_n) = 0$ for all $m > n$, we need only consider the following two systems of n equations:
\[
\begin{align*}
 s_1(q_n) &= (a_1 + a_{-1}) + \cdots + (a_n + a_{-n}) = 0 \\
 s_2(q_n) &= (a_2 + a_{-2}) + (a_4 + a_{-4}) + \cdots = 0 \\
 \vdots & \quad \vdots \\
 s_{n-1}(q_n) &= (a_{n-1} + a_{-(n-1)}) = 0 \\
 s_n(q_n) &= a_n + a_{-n} = 1;
\end{align*}
\]
\[
\begin{align*}
 s_{01}(q_n) &= (a_1 r_0 + a_{-1} r_0^{-1}) + \cdots + (a_n r_0^n + a_{-n} r_0^{-n}) = 0 \\
 s_{02}(q_n) &= (a_2 r_0^2 + a_{-2} r_0^{-2}) + (a_4 r_0^4 + a_{-4} r_0^{-4}) + \cdots = 0 \\
 \vdots & \quad \vdots \\
 s_{0,n-1}(q_n) &= (a_{n-1} r_0^{n-1} + a_{-(n-1)} r_0^{-(n-1)}) = 0 \\
 s_{0n}(q_n) &= a_n r_0^n + a_{-n} r_0^{-n} = 0.
\end{align*}
\]
Since the coefficient matrices for $(a_k + a_{-k})$ and $(a_k r_0^k + a_{-k} r_0^{-k})$ are non-singular, there are unique solutions for $(a_k + a_{-k})$ and $(a_k r_0^k + a_{-k} r_0^{-k})$, and hence for a_k and a_{-k}, $k=1, \cdots, n$.

To establish our representation theorem, we first obtain explicit formulas for q_n and q_0n. Let $\mu(n)$ be the Möbius function of n:
\[
\mu(n) = \begin{cases}
1, & \text{if } n = 1, \\
(-1)^k, & \text{if } n = q_1 \cdots q_k, \\
0, & \text{if } p^2 | n \text{ for some } p > 1,
\end{cases}
\]
where q_1, \cdots, q_k are distinct primes.
Lemma 1. For each \(n = 1, 2, \ldots \),

\[
q_n(z) = \sum_{j|n} \frac{\mu(n/j)}{r_0^{-j} - r_0^j} \left(\left(\frac{z}{r_0} \right)^j - \left(\frac{z}{r_0} \right)^{-j} \right)
\]

and

\[
q_0n(z) = \sum_{j|n} \frac{\mu(n/j)}{r_0^{-j} - r_0^j} \{ z^j - z^{-j} \}.
\]

Proof. We observe that the means

\[
s_n \left(\frac{(z/r_0)^j - (z/r_0)^{-j}}{r_0^{-j} - r_0^j} \right) = \begin{cases} 1, & \text{if } n \mid j, \\ 0, & \text{if } n \nmid j \end{cases}
\]

and

\[
s_0n \left(\frac{(z/r_0)^j - (z/r_0)^{-j}}{r_0^{-j} - r_0^j} \right) = 0 \text{ for all } n = 1, 2, \ldots .
\]

Hence, by virtue of Theorem 1, we have

\[
\frac{(z/r_0)^j - (z/r_0)^{-j}}{r_0^{-j} - r_0^j} = \sum_{n|j} q_n(z)
\]

for \(j = 1, 2, \ldots \). We now use the Möbius inversion theorem (cf. [5]) to obtain (2). The proof of (3) is similar.

Theorem 2. Let \(f \in A^{1+\epsilon}(D) \) for some \(\epsilon > 0 \). Then the series

\[
\sum_{k=1}^{\infty} R_k(f)q_k(z) + \sum_{k=1}^{\infty} R_{0k}(f)q_{0k}(z) + s_\infty(f)
\]

converges uniformly to \(f \) on \(D \) and

\[
\left| f(z) - \sum_{k=1}^{m} R_k(f)q_k(z) - \sum_{k=1}^{m} R_{0k}(f)q_{0k}(z) - s_\infty(f) \right| = O \left(\frac{1}{m^\delta} \right)
\]

uniformly on \(D \) for any fixed \(\delta, 0 < \delta < \epsilon \).

The series (4) is now called the Riemann series of the function \(f \) in \(D \) (cf. [3]).

Proof. For \(r_0 \leq |z| \leq 1 \), we have

\[
|q_k(z)| \leq \sum_{j|k} \frac{1 + r_0^{2j}}{1 - r_0^{2j}} \leq \frac{2d(k)}{1 - r_0^2}
\]

where \(d(k) \) denotes the number of divisors of \(k \). Using the well-known
estimate \(d(k) = O(k^{-\delta})\), where \(0 < \delta < \varepsilon\) (cf. [5]), and the fact that \(R_k(f) = O(1/k^{1+\varepsilon})\) and \(R_0(f) = O(r_0^{k}/k^{1+\varepsilon})\), which follows from the assumptions on \(f\) (cf. [2]), we can conclude that the series (4) converges uniformly on \(\bar{D}\) to some function \(h\), holomorphic in \(D\) and continuous on \(\partial D\). Furthermore, we have

\[
\left| h(z) - \sum_{k=1}^{m} R_k(f) q_k(z) - \sum_{k=1}^{m} R_{0k}(f) q_{0k}(z) - s_\infty(f) \right| = O\left(\frac{1}{m^\delta} \right)
\]

uniformly on \(\bar{D}\). Now, we use Lemma 1 to estimate the Fourier coefficients of \(h\): For \(m > 0\),

\[
am_m(h) = a_m \left[\sum_{k=1}^{\infty} R_k(f) \sum_{j|k} \frac{\mu(k/j)}{r_0^{-j} - r_0^{-i}} \{(z/r_0)^j - (z/r_0)^{-j}\} \right.
\]

\[
+ \sum_{k=1}^{\infty} R_{0k}(f) \sum_{j|k} \frac{\mu(k/j)}{r_0^{-j} - r_0^{-i}} (z^j - z^{-j}) + s_\infty(f) \right] = \frac{1}{1 - r_0^{2m}} \sum_{k=1}^{\infty} R_{mk}(f) \mu(k) + \frac{r_0^{m}}{1 - r_0^{2m}} \sum_{k=1}^{\infty} R_{0, mk}(f) \mu(k) = O\left(\frac{1}{m^{1+\varepsilon}} \right).
\]

Similarly, for \(m < 0\),

\[
am_m(h) = \frac{-r_0^{-2m}}{1 - r_0^{2m}} \sum_{k=1}^{\infty} R_{-mk}(f) \mu(k) + \frac{-r_0^{-m}}{1 - r_0^{-2m}} \sum_{k=1}^{\infty} R_{0, -mk}(f) \mu(k) = O(r_0^{|m|}/|m|^{1+\varepsilon}).
\]

Hence, \(h \in A^{1+\varepsilon}(D)\) and the means of \(h\) are

\[
s_m(h) = s_m \left[\sum_{k=1}^{\infty} R_k(f) q_k + \sum_{k=1}^{\infty} R_{0k}(f) q_{0k} + s_\infty(f) \right] = \sum_{k=1}^{\infty} R_k(f) \delta_{m,k} + s_\infty(f) = R_m(f) + s_\infty(f) = s_m(f),
\]

and similarly, \(s_{0m}(h) = R_{0m}(f) + s_\infty(f) = s_{0m}(f)\), for all \(m = 1, 2, \ldots\). Hence, \(f = h\) by Theorem 1.

For each \(n = 1, 2, \ldots\), let \(p_n(z) = \sum_{k|n} \mu(n/k) z^k\) as in [3]. We have

Theorem 3. Let \(f \in A^{1+\varepsilon}(D)\) for some \(\varepsilon > 0\). Then \(f\) is in \(A^{1+\varepsilon}(U)\) if and only if for all \(m \geq 1\)

\[
R_{0m}(f) = \sum_{j=1}^{\infty} p_j(r_0^m) R_{mj}(f).
\]

Here, it is clear that the series in (5) converges for every \(f\) in \(A^{1+\varepsilon}(D)\).
Proof. An easy calculation shows that

\[R_{0k}(p_j) = p_\alpha(r_0^k) \quad \text{if } j = \alpha k \]
\[= 0 \quad \text{if } k \not| j. \]

In [3], it is proved that if \(f \in A^{1+\epsilon}(U) \) then \(f(z) = \sum_{k=1}^{\infty} R_k(f)p_k(z) + s_\infty(f) \) uniformly in \(\overline{U} \). Hence, we have, by (6),

\[R_{0m}(f) = \sum_{j=1}^{\infty} R_{mj}(f) \sum_{\alpha | j} \mu\left(\frac{j}{\alpha}\right) r_0^{m\alpha} \]

which is (5). To prove the converse, we first prove the following identities for all \(k \) and \(n \):

\[\sum_{j|k} p_j(r_0^{kn/j}) \mu\left(\frac{k}{j}\right) = r_0^n \mu(k). \]

Indeed,

\[\sum_{j|k} p_j(r_0^{kn/j}) \mu\left(\frac{k}{j}\right) = \sum_{j|k} \mu\left(\frac{k}{j}\right) \sum_{\alpha | j} \mu\left(\frac{j}{\alpha}\right) r_0^{kn/j} \]
\[= \sum_{j|k} \mu\left(\frac{k}{j}\right) \sum_{\alpha | j} \mu(\alpha) r_0^{kn/\alpha} = \sum_{\alpha | k} \sum_{j|k/\alpha} \mu\left(\frac{k}{j}\alpha\right) \mu\left(\frac{k}{j}\right), \]

so that (7) follows from the identity \(\sum_{j|n} \mu(j) = \delta_{1,n} \).

From Theorem 2, we have

\[f(z) = \sum_{j=1}^{\infty} R_j(f)q_j(z) + \sum_{j=1}^{\infty} R_{0j}(f)q_0j(z) + s_\infty(f) = \sum_{n=-\infty}^{\infty} a_n z^n. \]

It is clear that for each \(n > 0 \),

\[a_n = \sum_{m=1}^{\infty} \frac{\mu(m)}{r_0^n - r_0^{-n}} R_{nm}(f)r_0^n + \sum_{m=1}^{\infty} \frac{\mu(m)R_{0,mn}(f)}{r_0^n - r_0^{-n}}. \]

Since \(R_k(f) = O(1/k^{1+\epsilon}) \), we obtain, by (5) and (7),

\[(r_0^n - r_0^{-n})a_n = \sum_{m=1}^{\infty} \sum_{j=1}^{\infty} p_j(r_0^{nm})R_{jm}(f) - \sum_{m=1}^{\infty} r_0^n R_{nm}(f) \mu(m) \]
\[= \sum_{k=1}^{\infty} R_{kn} \left(\sum_{j|k} p_j(r_0^{kn/j}) \mu\left(\frac{k}{j}\right) - r_0^n \mu(k) \right) = 0. \]

3. Final remark. The results in this paper are generalizations of those studied in ([1], [3]). Recently, Patil ([6], [7]) has given an explicit representation of an \(H^p \) function in terms of its boundary values on a small subset \(S \) of the unit circle. It is, therefore, also interesting to know whether or not just the arithmetic means of the values of a function \(f \in A^{1+\epsilon}(U) \) at
points "equally spaced" on S would uniquely determine f, and if so, whether or not an "explicit" formula for recapturing f from these means could be given. If S is an arc, some results have been recently obtained in [4].

REFERENCES

DEPARTMENT OF MATHEMATICS, TEXAS A&M UNIVERSITY, COLLEGE STATION, TEXAS 77843 (Current address of C. K. Chui)

Current address (C. H. Ching): Department of Mathematics, University of Melbourne, Parkville, Victoria 3052, Australia