EXPLICIT CONDITIONS FOR THE FACTORIZATION OF nTH ORDER LINEAR DIFFERENTIAL OPERATORS

ANTON ZETTL

Abstract. For any integer k with $1 \leq k \leq n$ sufficient conditions on the coefficients p_i are given for the factorization of certain classes of operators $L = p_n y^{(n)} + p_{n-1} y^{(n-1)} + \cdots + p_0 y$ into a product $L = PQ$ where P and Q are operators of the same type of orders $n-k$ and k, respectively. A special case yields that if $(-1)^n p_0 \geq 0$ then $y^{(n)} + p_0 y$ is factorable into a product of two regular differential operators of orders $n-k$ and k.

1. Introduction. We consider the classical nth order regular linear differential operator

$$L y = p_n y^{(n)} + p_{n-1} y^{(n-1)} + \cdots + p_0 y$$

where p_i for $i = 0, 1, \cdots, n$ are continuous real valued functions with $p_n(t) \neq 0$ on some interval $[a, b)$ for $-\infty < a < b \leq \infty$.

As a consequence of our main theorem we obtain the following factorization results: Suppose $p_n(t) \equiv 1$, $p_i \equiv 0$ for $i = 1, 2, \cdots, n-3$ and $p_{n-2} \geq 0$.

(a) If $p_0 \geq 0$, then L has a right factor of any even order, i.e., for any even positive integer $k < n$ there exist operators P and Q of type (1.1) and orders $n-k$ and k, respectively, such that $L = PQ$. (b) If $p_0 \leq 0$, then L has a right factor of any odd order.

Right factors Q of order $n-1$ are obtained under a much weaker hypothesis. For the case when the order of Q is 1 stronger results are well known. Some extensions of these results are indicated as well as a generalization to a quasi-differential operator. Also a couple of applications to boundary value problems are given.

According to a well-known result of Pólya [12] the operator L has a factorization into "products" of first order operators

$$L y = r_n (r_{n-1} \cdots (r_1 (r_0 y)' \cdots)')$$

if and only if the equation $L y = 0$ has a fundamental set of solutions

Received by the editors October 6, 1972 and, in revised form, February 20, 1973.

AMS (MOS) subject classifications (1970). Primary 34A30, 34A05; Secondary 34A01.

Key words and phrases. Ordinary differential equations, factoring differential operators, Wronskians, property "W", linear homogeneous differential equations.

© American Mathematical Society 1973
\[y_1, \ldots, y_n \text{ such that} \]

\[(1.3) \quad W_k > 0 \quad \text{for} \quad k = 1, \ldots, n-1 \]

where \(W_1 = y_1 \) and \(W_k = \det_{i,j=1,\ldots,k}[y_j^{(i-1)}] \) for \(k = 2, \ldots, n-1 \). For a short and elegant proof of this factorization see [13]. A factorization of type (1.2) on an interval \((a, b)\) is known to be equivalent to disconjugacy on \((a, b)\). The problem of finding explicit conditions on the coefficients \(p_i \) which yield a factorization of type (1.2) or, equivalently, assure that \(L \) is disconjugate has received considerable attention. For some recent papers see [1], [6], [11], [14], [15].

In [17] it is shown that an operator \(L \) of type (1.1) has a factorization

\[(1.4) \quad L = PQ \]

where \(P \) and \(Q \) are of type (1.1) of orders \(n-k \) and \(k \), respectively, if and only if there exist \(k \) linearly independent solutions of \(Ly=0 \) whose Wronskian \(W_k \) satisfies

\[(1.5) \quad W_k > 0. \]

Not much seems to be known about conditions which yield factorizations of type (1.4). Some conditions—involving the Lagrange bilinear form for solutions—which imply a factorization of some \(2n \)th order operators as products of two \(n \)th order ones were obtained by Rellich and Heinz in [4]. Direct conditions on the coefficients which yield factorizations of types (1.2) and (1.4) are obtained in [16] for the case \(n=3 \).

2. We use the notation \(X^\geq 0 \) for a matrix or vector \(X \) to mean that each component of \(X \) is nonnegative. Similarly \(X > 0 \) means each component is strictly positive.

Our development is based on the following two lemmas. The first one is a very useful result due to Mikusinski [9]. The second one is the result stated above from [17].

Lemma 1. Let \(y_i = \sum_{j=1}^{m} F_{ij} y_j \) for \(i = 1, \ldots, m \) be a system of differential equations with real valued continuous coefficients which are nonnegative for \(i \neq j \) on \([a, b)\). If \(Y = (y_i) \) for \(i = 1, \ldots, m \) is a solution vector satisfying \(Y(a)^\geq 0 \), then \(Y(t)^\geq 0 \) for \(t \) in \([a, b)\). Moreover if some component \(y_i \) is positive at a point \(c \) in \([a, b)\), then \(y_i(t) \) is positive for \(t > c \).

Lemma 2. A necessary and sufficient condition that a differential operator \(L \) of type (1.1) has a factorization (1.4) where \(P \) and \(Q \) are operators of type (1.1) of orders \(n-k \) and \(k \) respectively is that there exist \(k \) linearly independent solutions of \(Ly=0 \) whose Wronskian \(W_k \) is positive.

For convenience of notation we denote the solution space of \(Ly=0 \) by \(S \). In the rest of the paper we assume, for convenience, that \(p_n(t)^\equiv 1 \).
As a consequence of Lemma 1 and the classical vector matrix representation of the equation \(Ly=0\) we obtain

Theorem 1. Suppose \(p_i \leq 0\) for \(i=0, 1, \ldots, n-2\). If \(y \in S\) with \(y^{(i)}(a) \geq 0\) for \(i=0, 1, \ldots, n-1\) and \(y^{(r)}(a) > 0\) for \(r=0, \ldots, n-1\) and \(t > a\) and \(y^{(p)}(t) > 0\) for \(p=0, \ldots, r\) and \(t > a\).

Using positive initial conditions at \(a\) to determine a solution of \(Ly=0\), then as a consequence of Theorem 1 and Lemma 2 we obtain

Corollary 1. If \(p_i \leq 0\) for \(i=0, 1, \ldots, n-2\); then the operator \(L\) can be factored: \(L = PQ\) where \(P\) is of order \(n-1\) and \(Q\) is of order 1.

Theorem 1 is stated only for the sake of completeness since the result is known—although many authors use a sign condition on \(p_{n-1}\).

The conclusion of Corollary 1 still holds if the signs of the coefficients alternate—see [2, p. 508].

Theorem 2. If \((-1)^{n-1}p_i \leq 0\) for \(i=0, 1, \ldots, n-2\) then there exists \(y \in S\) with \(y(t) > 0\) for \(t > a\).

Let \(z_1, \ldots, z_n\) be solutions of \(Ly=0\) determined by the initial conditions

\[
(2.2) \quad z_j^{(i-1)}(a) = \delta_{ij} \quad \text{for } i, j = 1, \ldots, n.
\]

Our main result is:

Theorem 3. Suppose \(p_i \equiv 0\) for \(i=1, 2, \ldots, n-3\) and \(p_{n-2} \leq 0\). Let \(W_k\) denote any \(k\)th order Wronskian \(W(z_1, z_2, \ldots, z_{k-1})\) for \(i=1, 2, \ldots, n-k+1, k=1, \ldots, n-1\). If \(p_0 \geq 0\) and \(k\) is even, then \(W_k > 0\) on \((a, b)\). If \(p_0 \leq 0\) and \(k\) is odd, then \(W_k > 0\) on \((a, b)\).

Proof. Let \(y_1, \ldots, y_k\) be any solutions of \(Ly=0\). For integers \(i_j \leq n, j=1, \ldots, k\), we define

\[
D(i_1, i_2, \ldots, i_k) = \det \begin{vmatrix}
y_1^{i_1}, & y_2^{i_2}, & \ldots, & y_k^{i_k} \\
y_1^{i_2}, & y_2^{i_2}, & \ldots, & y_k^{i_k} \\
\vdots & \vdots & \ddots & \vdots \\
y_1^{i_k}, & y_2^{i_k}, & \ldots, & y_k^{i_k}
\end{vmatrix}
\]

Note that \(D(i_1, \ldots, i_k) = 0\) if any pair of \(i_j\)'s are equal and that the \(i_j\)'s can always be put in increasing order by a change in sign, if necessary. Also note that \(D(i_1, i_2, \ldots, i_{k-1}, n)\) can be expressed in terms of determinants involving only derivatives of orders less than \(n\) by replacing \(y^{(n)}_i\) by \(-p_{n-1}y^{(n-1)}_i - \cdots - p_0y_i\).
If $i_k < n - 1$ observe that

$$D'(i_1, i_2, \ldots, i_k) = D(i_1 + 1, i_2, \ldots, i_k) + D(i_1, i_2 + 1, i_3, \ldots, i_k) + \cdots + D(i_1, i_2, \ldots, i_k + 1).$$

If $i_k = n - 1$, then

$$D'(i_1, \ldots, i_k) = D(i_1 + 1, i_2, \ldots, i_k) + D(i_1, i_2 + 1, i_3, \ldots, i_k) + \cdots + D(i_1, i_2, \ldots, i_{k-1} + 1, i_k) + D(i_1, i_2, \ldots, i_{k-1}, i_k + 1) = n$$

and

$$D(i_1, i_2, \ldots, i_{k-1}, n) = -p_0 D(i_1, i_2, \ldots, i_{k-1}, 0) - p_1 D(i_1, i_2, \ldots, i_{k-1}, 1) - p_2 D(i_1, i_2, \ldots, i_{k-1}, 2) - \cdots - p_{n-1} D(i_1, i_2, \ldots, i_{k-1}, n-1).$$

From this it follows that the set of $D(i_1, i_2, \ldots, i_k)$ for $i_1 < i_2 < \cdots < i_k$, $i_j = 0, 1, \ldots, n - 1, j = 1, \ldots, k$, are solutions of a system of differential equations $Y' = FY$ where Y is a vector of order (k) with components $D(i_1, i_2, \ldots, i_k)$ and F is an (k) by (k) matrix whose entries consist of 0's and 1's and $(-1)_0 p_0, +p_1, -p_1, +p_2, -p_2, \ldots, +p_{n-3}, -p_{n-3}, -p_{n-2}, -p_{n-1}$. The components of Y are ordered as follows:

$$Y = \text{transpose of} [D(0, 1, \cdots, k-1), D(0, 1, \cdots, k-2, k), \ldots, D(0, 1, \ldots, k-3, k-1, k), \ldots, D(0, 1, \cdots, k-3, k-1, n-1), \ldots].$$

Note that $-p_{n-1}$ is on the diagonal of F—hence no sign condition is needed for p_{n-1} in order to use Lemma 1.

Therefore by Lemma 1, all the components of Y are nonnegative on $[a, b]$ if $Y(a) \geq 0$.

For any $i = 1, 2, \ldots, n-k+1$ let $y_1 = z_i, y_2 = z_{i+1}, \ldots, y_k = z_{i+k-1}$ where the z_j's are the solutions determined by the initial conditions (2.2).

For such a choice of y_1, y_2, \ldots, y_k the initial vector $Y(a) \geq 0$ and the component $D(i-1, i, i+1, \ldots, i+k-2)$ has the value 1 at a. The first component of Y, namely W_k, is nondecreasing on $[a, b)$ since $W_k = D(0, 1, \cdots, k-2, k-1) = D(0, 1, \cdots, k-2, k) \geq 0$. Hence W_k is positive on (a, b) since W_k identically zero on some open interval (a, t_0) would imply that all the components of Y are identically zero on (a, t_0). But the component $D(i-1, i, \cdots, i+k-2)$ cannot be zero in (a, t_0) since it is positive at a and continuous. This completes the proof of Theorem 3.

The factorization result mentioned in the introduction is obtained by
taking \(i=1 \) in the above argument and noting that \(W(z_1, z_2, \ldots, z_k)(a) = 1 \) to get \(W(z_1, z_2, \ldots, z_k)(t) > 0 \) for \(t \geq a \). The rest follows from Lemma 2.

We remark that, as shown in [17], the right factor \(Q \) can be taken as \(Qy = W(y_1, y_2, \ldots, y_k, y) \) where \(y_1, y_2, \ldots, y_k \) is any set of solutions of \(Ly = 0 \) satisfying \(W_k = W(y_1, \ldots, y_k) > 0 \).

For the case \(k = n - 1 \), we obtain a stronger result:

Theorem 4. Suppose \((-1)^{n+1}p \geq 0\) for \(j = 0, 1, \ldots, n - 2 \). Then there exist \(y_1, y_2, \ldots, y_{n-1} \in S \) such that \(W_{n-1} = W(y_1, y_2, \ldots, y_{n-1}) > 0 \).

Proof. The proof is similar to that of Theorem 3, therefore we merely outline it here.

Let solutions \(y_i \) of \(Ly = 0 \) be determined by initial conditions \(y_i^{j-1}(a) = \delta_{ij} \) for \(i = 1, \ldots, n - 1 \) and \(j = 1, \ldots, n \). Define \(D(i_1, i_2, \ldots, i_{n-1}) \) as in the proof of Theorem 3. As in the proof of Theorem 3 we then show that the column vector

\[
Y = \begin{bmatrix}
D(0, 1, 2, \ldots, n - 2), D(0, 1, 2, \ldots, n - 3, n - 1), \\
D(0, 1, 2, \ldots, n - 4, n - 2, n - 1), \\
\vdots \\
D(0, 2, 3, \ldots, n - 1), D(1, 2, 3, \ldots, n - 1)
\end{bmatrix}
\]

satisfies the differential system \(Y' = FY \) where \(F \) is the matrix having 1’s on the super diagonal, \(-p_{n-1} \) on the diagonal except for the \((1, 1)\) and \((n, n)\) position, 0’s elsewhere except for the first column which is, from top to bottom, \([0, -p_{n-2}, +p_{n-3}, \ldots, (-1)^{n-1}p_1, (-1)^{n+1}p_0]\). Noting that \(Y(a) = [1, 0, \ldots, 0] \), we conclude, by Lemma 1, that

\[
y_1(t) = D(0, 1, 2, \ldots, n - 2)(t) = W_{n-1}(t) = W(y_1, y_2, \ldots, y_{n-1})(t) > 0 \quad \text{for } t \geq a.
\]

As an immediate consequence of Theorem 4 and Lemma 2 we obtain

Corollary 2. Under the hypothesis of Theorem 4, \(L \) has a right factor \(Q \) of order \(n - 1 \).

3. Here we indicate some extensions of these results and give a couple of applications.

Remark 1. This is a result obtained by Kim in [5]. Suppose \(u, v \) are solutions of \(Ly = 0 \) satisfying \(W_2 = W(u, v) = uv' - vu' > 0 \) on \([a, b]\). By Lemma 2 we have a factorization \(L = PQ \) where \(Q \) has order 2 and by the remark following the proof of Theorem 3 we can take \(u, v \) to be a fundamental set of solutions of \(Qy = 0 \). Therefore we can conclude such things as:

(i) Neither \(u \) nor \(v \) can have a double zero on \([a, b]\).
(ii) \(u^j, v^j \) have no common zero on \([a, b]\) for \(j = 0, 1 \).
(iii) Between any two zeros of one there is a zero of the other.
Remark 2. If \(p_i \in \mathcal{C}^i_{(a,b)} \) for \(i=0, 1, \cdots, n \) then the classical adjoint operator \(L^+ \), defined by

\[
L^+ y = (-1)^n (p_n y)^{(n)} + (-1)^{(n-1)} (p_{n-1} y)^{(n-1)} + \cdots + p_0 y
\]

can be put into the form (1.1). By applying the above factorization results to the adjoint operator \(L^+ \) and using the fact that \(L = PQ \) if and only if \(L^+ = Q^+P^+ \)—see [10]—additional sufficient conditions for factorization can be obtained. We illustrate with an example: Consider the fourth order operators \(L \) and \(L^+ \) defined by

\[
Ly = y^{(4)} + p_3 y^{(3)} + p_2 y^{(2)} + p_1 y^{(1)} + p_0 y,
\]

\[
L^+ y = y^{(4)} - (p_3 y)^{(3)} + (p_2 y)^{(2)} - (p_1 y)' + p_0 y
\]

\[
\]

Applying our factorization theorems we have

Corollary 3. If \(p_2 - 3p_3 \leq 0, 2p_2 - p_1 - 3p_3 \leq 0, p_0 - p_1 + p_3 - p_2 \leq 0, \) then \(L^+ = P_3 Q_1 \) where \(P_3, Q_1 \) are operators of type (1.1) of orders 3 and 1, respectively. Hence \(L = Q_1^+ P_3^+ \).

Corollary 4. If \(p_0 - p_1 + p_3 - p_2 \leq 0, 2p_2 - p_1 - 3p_3 \geq 0 \) and \(p_2 - 3p_3 \leq 0, \) then \(L = Q_1^+ P_3^+ \) where \(Q_1, P_3 \) are of orders 1 and 3, respectively.

Corollary 5. If \(p_0 - p_1 + p_3 - p_2 \leq 0, 2p_2 - p_1 - 3p_3 = 0 \) and \(p_2 - 3p_3 \leq 0, \) then \(L = P_2 Q_2 \) and \(L^+ = Q_2^+ P_2^+ \) where \(P_2, Q_2 \) are operators of type (1.1) of order 2.

Corollary 6. If \(p_0 - p_1 + p_3 - p_2 \leq 0, 2p_2 - p_1 - 3p_3 \geq 0 \) and \(p_2 - 3p_3 \leq 0, \) then there exist operators \(P_1 \) and \(Q_3 \) of type (1.1) of orders 1 and 3, respectively such that \(L^+ = P_1 Q_3 \) and hence \(L = Q_3^+ P_1^+ \).

As another application of some of these factorizations we list

Theorem 5. Under the hypothesis of Theorem 4, the boundary value problem

\[
Ly = 0, \quad y(a) = 0, \quad y(\beta) = y'(\beta) = \cdots = y^{(n-2)}(\beta) = 0
\]

for any \(a, \beta \) in \([a, b) \) with \(a < \beta \) has no nontrivial solution.

Proof. Suppose \(y \) is a nontrivial solution. Let \(c \) be the first point to the left of \(\beta \) such that \(y^{(i)}(c) \neq 0 \) for \(i = 0, \cdots, n-2 \) and \(y^{(n-1)}(c) = 0. \)
Determine solutions $y_1, y_2, \cdots, y_{n-2}$ by the initial conditions:

$y_1(c) = y(c), \quad y'_1(c) = 0, \quad \cdots, \quad y_{n-1}^{(n-1)}(c) = 0$

$y_2(c) = 0, \quad y'_2(c) = y'(c), \quad y'_2(c) = 0, \quad \cdots, \quad y_{n-1}^{(n-1)}(c) = 0$

$\quad \vdots$

$y_{n-2}(c) = 0, \quad \cdots, \quad y_{n-2}^{(n-3)}(c) = 0, \quad y_{n-2}^{(n-2)}(c) = y_{n-2}^{(n-3)}(c),$ $\quad y_{n-2}^{(n-2)}(c) = 0, \quad y_{n-1}^{(n-2)}(c) = 0.$

Define $D(i_1, i_2, \cdots, i_{n-1})$ as in the proof of Theorem 3 using $y = y_{n-1}$ and note that $D(0, 1, 2, \cdots, n-2)(c) = W(y_1, y_2, \cdots, y_{n-2}, y)(c) = y(c)y'(c) \cdots y_{n-2}^{(n-2)}(c) \neq 0$ and all other $D(i_1, i_2, \cdots, i_{n-1})$ are zero at c.

Repeated applications of the mean value theorem show that the signs of $y(c), y'(c), y''(c), \cdots, y_{n-2}^{(n-2)}(c)$ alternate. Here we are using the fact that $y^{(i-1)}(c) \neq 0$ and that c is the first point to the left of β such that $y^{(i)}(c) \neq 0$ for $i = 0, \cdots, n-2$ and $y^{(n-1)}(c) = 0$. By replacing y with $-y$, if necessary, we can get the product $y(c)y'(c) \cdots y_{n-2}^{(n-2)}(c)$ positive. Proceeding as in the proof of Theorem 4 we get to the conclusion

$$W(t) = W(y_1, y_2, \cdots, y_{n-2}, y)(t) > 0 \quad \text{for } t > c.$$

But this contradicts $W(\beta) = 0$.

We list here a couple of illustrations of Theorem 3.

Theorem 6. Under the hypothesis of Theorem 3, if y is a nontrivial solution of $Ly = 0$ on $[a, b]$ which has a zero of order k at a and a zero of order $n-k$ at c, $a < c < b$ then $n-k$ is even if $p_0 \geq 0$ and $n-k$ is odd if $p_0 \leq 0$.

Proof. Such a solution y can be expressed as $y = \alpha_{k+1}z_{k+1} + \cdots + \alpha_nz_n$. A zero of order $n-k$ at $c > a$ would imply $W(z_{k+1}, \cdots, z_n)(c) = 0$. A. Ju. Levin [7], [8] obtained, by different methods, this result for the operator $y^n + p_0y$.

A consequence of Theorem 6 is that, under the hypothesis of Theorem 3, no nontrivial solution of $Ly = 0$ can have zeros at a, c with $a < c < b$ of combined order $> n$, because this would imply that two Wronskians of consecutive integral order are zero at c. But one of these has to be even and one odd.

If an operator is given in quasi-differential form—such as $(py^n)' + qy$—one can sometimes get simpler conditions by using the techniques of proof above and appropriate “quasi-derivatives” than by “stringing out” the expression into the form (1.1) and then using Theorems 1, 2, 3, and 4.
As an illustration we consider the operator

\[(3.1) \quad L_y = (p y''')'' + q y\]

where \(p \in C^2([a, b]), q \in C([a, b])\) and \(p > 0\) on \([a, b)\).

Theorem 7. (a) If \(q \leq 0\), then there exists a positive solution of \(L_y = 0\).
(b) If \(q \geq 0\) and \((pq)' \geq 0\), then there exist solutions \(u, v\) of \(L_y = 0\) such that \(W_z = W(u, v) > 0\). Hence \(L\) has a factorization into a product of two second order operators.

Proof. Part (a). The proof is similar to that of Theorem 1. The main modification is that the vector \(Y\) used here is \(Y = \text{column vector} [y, y', py'', (py''')']\) and the resulting matrix \(F\) has components all zero except for \(-q\) in the (4, 1) position, 1 in the (1, 2) and (3, 4) positions and \(1/p\) in the (2, 3) position. The details are omitted.

Part (b). Determine solutions \(u, v\) of \(L_y = 0\) by the initial conditions:

\[
\begin{align*}
&u(a) = 1, \quad u'(a) = 0, \quad u''(a) = 0, \quad u'''(a) = 0, \\
&v(a) = 0, \quad v'(a) = 1, \quad v''(a) = 0, \quad v'''(a) = 0.
\end{align*}
\]

Let \(z = W(u, v) = uv' - u'v\). We show that the column vector \(Y = [z, pz', (pz')', (pz'')', (pz''')']\) satisfies a differential system \(Y' = FY\): Note that

\[
\begin{align*}
z' &= \begin{bmatrix} u \\ v \\ u'' \\ v'' \end{bmatrix}, \\
(pz')' &= \begin{bmatrix} u' \\ v' \\ pu'' \\ pv'' \end{bmatrix} + \begin{bmatrix} u \\ v \\ (pu')' \\ (pv')' \end{bmatrix}, \\
(pz')'' &= 2 \begin{bmatrix} u' \\ v' \\ (pu'')' \\ (pv'')' \end{bmatrix}, \\
(pz')''' &= 2 \begin{bmatrix} u'' \\ v'' \\ (pu''')' \\ (pv''')' \end{bmatrix} + 2qz
\end{align*}
\]

where we substituted \(-qu\) for \((pu'')'\) and \(-qv\) for \((pv'')'\) in \([p(pz')']' = 4q(pz') + 2(pq)'z\).

From these computations we see that \(Y' = FY\) where \(F\) is the matrix with components zero everywhere except for 1's in the (2, 3) and (3, 4) positions, \(1/p\) in the (1, 2) and (4, 5) positions, \(+2(pq)\) in the (5, 1) position and \(+rq\) in the (5, 2) spot. The conclusion follows from Lemmas 1 and 2.
REFERENCES

DEPARTMENT OF MATHEMATICS, NORTHERN ILLINOIS UNIVERSITY, DEKalb, ILLINOIS 60115