BOREL'S FIXED POINT THEOREM FOR KAELER MANIFOLDS AND AN APPLICATION

ANDREW J. SOMMESE

Abstract. A short proof of a generalization of the Borel fixed point theorem to the case of Kaehler manifolds is given and, as an application, a short proof of Wang's theorem that compact simply connected homogeneous manifolds are projective and of the form \(G/P \), where \(G \) is a complex semisimple Lie group and \(P \) is a parabolic subgroup.

I will give a short proof of a generalization of the Borel fixed point theorem to the case of Kaehler manifolds and, as an application, give a short proof of Wang's theorem that compact simply connected homogeneous Kaehler manifolds are projective and of the form \(G/P \), where \(G \) is a complex semisimple Lie group and \(P \) is a parabolic subgroup.

I would like to thank Phillip Griffiths who suggested trying to find a short proof of Wang's theorem. I would also like to thank Professor Yozo Matsushima for his comments.

Proposition I. Let \(X \) be a compact Kaehler manifold with \(H^1(X, \mathbb{C}) = 0 \), and let \(S \) be a solvable connected complex Lie group acting holomorphically on \(X \). Let \(Y \) be a subvariety of \(X \) invariant under \(S \). Then \(S \) has a fixed point on \(Y \) and the fixed points form a subvariety.

Proof. First assume \(Y \) is a manifold, \(S \) is one dimensional and has no fixed points on \(Y \). Associated to \(S \) we have a holomorphic tangent field on \(X \) and by invariance of \(Y \) under \(S \), also on \(Y \); call it \(A \). By assumption \(A \) has no zeroes on \(Y \).

We have short exact sequences where \(\mathcal{O}_Y, \mathcal{O}_X \) are the holomorphic structure sheaves and \(\Omega^1_X, \Omega^1_Y \) are the holomorphic one forms and \(M \) is a subsheaf of \(\mathcal{O}_X \). \(A \) and \(A|_Y \) as sections of the dual sheaves of \(\Omega^1_X \) and \(\Omega^1_Y \).

Received by the editors December 7, 1972.

Key words and phrases. Transcendental algebraic geometry and Hodge theory, homogeneous manifolds, automorphism groups of complex manifolds, Kaehler manifolds.
\(\Omega^1_Y \) respectively give rise to natural maps denoted by the same letters. \(r \) stands for the restriction map from \(X \) to \(Y \).

\[
\begin{array}{c}
0 \rightarrow F^1 \overset{A}{\rightarrow} \Omega^1_X \overset{\mathcal{O}_X}{\rightarrow} 0 \\
\downarrow \quad \quad \downarrow \\
0 \rightarrow F^2 \overset{A^1_Y}{\rightarrow} \Omega^1_Y \overset{\mathcal{O}_Y}{\rightarrow} 0
\end{array}
\]

\(A \) having no zeroes is equivalent to \(\Omega^1_Y \overset{A^1_Y}{\rightarrow} \mathcal{O}_Y \) being a surjection, and \(F^2 \) being locally free of rank \(n-1 \).

Passing to cohomology we have the commutative diagram:

\[
\begin{array}{ccc}
H^1(X, \Omega^1_X) & \overset{f^1_X}{\longrightarrow} & H^1(X, \mathcal{O}_X) \\
\downarrow & & \downarrow \\
H^1(Y, \Omega^1_Y) & \overset{f^1_Y}{\longrightarrow} & H^1(Y, \mathcal{O}_Y)
\end{array}
\]

The Kaehler form \(\omega \) on \(X \) restricts to a Kaehler form \(\omega|_Y \) on \(Y \). Since \(H^1(X, \mathcal{O}_X) \) is a subgroup of \(H^1(X, \mathcal{O}_X) \) on a Kaehler manifold, it equals zero. Thus the image of \(\omega|_Y \) in \(H^1(Y, \mathcal{O}_Y) \) is 0 and thus the Kaehler form of \(Y \) is an element of \(H^1(Y, F^2) \). By the Dolbeault isomorphism we can represent \(\omega|_Y \) by a \(F^2 \) valued 0, 1 form. I observe that the \(n \)th exterior power of \(\omega|_Y \), where the dimension of \(Y = n \), would be zero, since the fibre dimension of \(F^2 = n-1 \). On the other hand the \(n \)th power of \(\omega|_Y \) is a nontrivial element of \(H^{2n}(Y, \mathcal{O}_Y) \), a volume form, which gives a contradiction.

We now remove the assumption that \(Y \) is nonsingular. Simply note that \(Y \) has a finite filtration by singular varieties

\[
Y = Y_0 \supseteq Y_1 \supseteq \cdots \supseteq Y_m,
\]

where \(Y_s \) is the singular set of \(Y_{s-1} \). This filtration is respected by \(S \) and the last element of the filtration is a manifold which we can take as \(Y \).

The fixed point set is the zero set of \(A \) and so is a subvariety.

Now let \(S \) be of dimension \(n \) and assume the proposition is true for \(n-1 \). Since \(S \) is solvable it has a normal subgroup \(S' \) of dimension \(n-1 \). By assumption \(S' \) has a nontrivial fixed point variety \(Y' \) in \(Y \). Note that \(S \) leaves this new \(Y' \) invariant. To see this, take element \(s \) of \(S \), and an element \(y \) of \(Y' \) and note that \(S'(sy) = s(S'y) = sy \), so \(sy \) is a fixed point of \(S' \) in \(Y \), that is, an element of \(Y' \).

Pick an \(A \) belonging to the complex Lie algebra of \(S \) and not belonging
to the Lie subalgebra of S'. A gives rise to a one parameter subgroup of T the universal cover of S, and hence to a tangent vector field on Y' and the fixed point set of S in Y is the fixed point set of T in Y', and the first part of the proof applies. Q.E.D.

Proposition II. Let X be a compact homogeneous Kaehler manifold with $H^1(X, C)=0$. Then X is a projective manifold of the form G/P where G, the connected component of the identity of X's complex Lie group of biholomorphic transformations is semisimple, and P is parabolic, that is, contains a maximal solvable connected subgroup.

Proof. If G were not semisimple it would have a solvable radical N. Let $x \in X$ be a fixed point of N which exists by Proposition I. For all $g \in G$ we have $N(gx)=g(Nx)=gx$. But G is transitive and so N leaves every point fixed and is thus the identity.

Let B be a maximal solvable connected subgroup of G. B has a fixed point x and so B belongs to the stabilizer of x, which we call P. Thus x is of the form G/P where P is parabolic. Q.E.D.

Remarks. It is easy to give simply connected complex manifolds where the Borel fixed point theorem is false, e.g. the Calabi-Eckmann manifolds. The correct setting is probably on an appropriate generalization of Kaehler manifolds that one might call pseudo-Kaehler manifolds. These would be complex compact manifolds with a closed C^∞ 1, 1 form which is positive definite on a Zariski open set. Hodge theory should go through for these manifolds, and then the above proof will be applicable.

The general structure of a compact Kaehlerian homogeneous space is given in [1].

The proof of the fixed point theorem above, looked at in the context of the Albanese map, actually proves a strong converse.

Proposition. Let S be a complex connected solvable Lie group acting holomorphically on a compact Kaehler manifold X. S has a fixed point on any subvariety, including X, that S leaves invariant if and only if the complex Lie algebra of holomorphic vector fields on X associated to S is annihilated by every holomorphic one form.

If S has a fixed point, then the fixed point subvariety surjects onto the image of X in its Albanese variety under the Albanese map.

In the case that there are no holomorphic one forms, that is $H^1(X, C)=0$, the above result reduces to the theorem in the paper.

A corollary of the above proposition is that a compact Kaehler manifold that possesses a nowhere vanishing holomorphic vector field A, also possesses a holomorphic one form a such that $a(A) \neq 0$.

This proof and other related results will be presented in a future article.
BIBLIOGRAPHY

DEPARTMENT OF MATHEMATICS, HARVARD UNIVERSITY, CAMBRIDGE, MASSACHUSETTS 02138

Current address: Department of Mathematics, Yale University, New Haven, Connecticut 06520