COVERING DIMENSION IN FINITE-DIMENSIONAL METRIC SPACES

JAPHETH HALL, JR.

Abstract. Let $P:2^V \to 2^V$ be a structure in a topological space V such that $P(\emptyset) = \emptyset$, $P(\{x\}) = \{x\}$ if $x \in V$, and $P(Z)$ is closed if $Z \subseteq V$. If G is a covering of V, let $G_x = \{X \subseteq G : x \in X\}$. If X is a set and Y is a set, let $|X|$ denote the cardinal number of X and $X - Y = \{x \in X : x \notin Y\}$. Let n be an integer such that $n \geq -1$. $\dim P V$ is defined as follows: $\dim P V = -1$ if $V = \emptyset$. If $V \neq \emptyset$, then $\dim P V = n$ if (1) for each finite open covering G of V, there is an open refinement H of G such that $|H_x| \leq n + 1$ if $x \in V$; and (2) there is a finite open covering G of V such that if H is an open refinement of G, then $|H_x| \geq n + 1$ for some $x \in V$. We say that P has property (*) if for each nonempty open $Y \subseteq V$ and each $X \subseteq V$ such that $P(X) \subseteq V$ and $x \notin P(X - \{x\})$ whenever $x \in Y$ and each $x \in \{V - P(X)\} \cap P(X \cup \{x\}) \neq \emptyset$. Theorem. If V is a metric space, P has property (*), $B \subseteq V$, B is finite, $P(B) = V$ and $x \notin P(B - \{x\})$ if $x \in B$, then $\dim P V = |B| - 1$.

1. Introduction. It is known [5, pp. 9, 93–99] that the covering dimension of each finite-dimensional Euclidean space E^n is n, the usual dimension. The purpose of this paper is to present a short proof of this simply stated fact.

It is crucial that each finite-dimensional Euclidean space is a topological space V in which there is a structure $P:2^V \to 2^V$ [4, p. 317] such that P is a closure structure having the exchange property ([2], [3], and [4]), $P(\emptyset) = \emptyset$, $P(\{x\}) = \{x\}$ for each $x \in V$, and $P(Z)$ is closed for each $Z \subseteq V$. Indeed, if $V = E^n$, then the linear variety structure in V will suffice as P, that is, if $X \subseteq V$, then $P(X)$ is the collection of all finite linear combinations of elements of X with coefficients summing to 1.

Consider a structure P in a set V and a subset X of V. By definition, X is P-independent ([2] and [3]) if $x \notin P(X - \{x\})$ for each $x \in X$; X is a P-basis of V if X is P-independent and $P(X) = V$. By definition, the P-dimension of V, P-dim V, exists if any two P-bases of V have the same cardinal number. If P-dim V exists, then P-dim V is the cardinal number.
of a P-basis of V. It is known ([2] and [3]) that if P is a closure structure having the exchange property and V has a finite P-basis, then P-dim V exists.

If G is a covering of a set V and x ∈ V, then the symbol G_x will denote \{X ∈ G: x ∈ X\}. If X is a set and Y is a set, the symbol X − Y will denote \{x ∈ X: x ∉ Y\}, and the symbol |X| will denote the cardinal number of X. Throughout the remainder of this paper it is assumed that V is a topological space and P is a structure in V such that P(∅) = ∅, P(\{x\}) = \{x\} for each x ∈ V and P(Z) is closed for each Z ⊆ V.

The covering dimension of V relative to P, dim_P V, is defined as follows: dim_P V = −1 if V = ∅. If V ≠ ∅ and n is a cardinal number, then dim_P V = n if (1) and (2) are true: (1) For each finite open covering G of V, there is an open refinement H of G \[an open covering of V such that if X ∈ H, then X ⊆ Y for some Y ∈ G]\ such that |H_x| ≤ n + 1 for each x ∈ V, and (2) There is a finite open covering G of V such that if H is an open refinement of G, then |H_x| ≥ n + 1 for some x ∈ V.

We say that P has property (⋆) if for each nonempty open subset Y of V and each P-independent subset X of V such that X is not a P-basis of V and each x ∈ V − P(X), Y − P(X) contains an element of P(X ∪ {x}).

It is shown (Theorem 1) that if G is a finite open covering of V and B is a P-basis of V, then there is an open refinement H, of G such that \(|(H)_{B,x}| ≤ |B|\) for each x ∈ V; and (Theorem 2) that if V is a metric space and P has property (⋆) while B is a finite P-basis of V, then there is a finite open covering G _{H} of V such that if H is an open refinement of G _{B}, then \(|H_x| ≥ |B|\) for some x ∈ V. It follows (Theorem 3) that if V is a metric space and P has property (⋆) while B is a finite P-basis of V, then dim_P V = |B| − 1.

2. Main results. If V is a metric space, then the following notation will be used: If r is a positive real number and A' is a nonempty subset of V, then the symbol XR shall denote \{x ∈ V: d(x, X) < r\}, where d is the metric on V. The term “poset” [1, p. 1] will be used to refer to a pair (W, R) such that W is a set and R is a partial order relation on W.

Theorem 1. If G is a finite open covering of V and B is a P-basis of V, then there is an open refinement H, of G such that \(|(H)_{B,x}| ≤ |B|\) for each x ∈ V.

Proof. Assume that G is a finite open covering of V, and that B is a P-basis of V. Since P(∅) = ∅ and P(\{x\}) = \{x\} for each x ∈ V, it follows that if B = ∅ or B = \{x\} for some x ∈ V, then V = P(B) = B, so that G = \{V\}. Hence, if B = ∅ or B = \{x\} for some x ∈ V, then let H _{B} = G. Consider the case that |B| > 1. Let b ∈ B. Using Hausdorff’s maximal principle [1,
p. 192], extend the chain \(\{ \emptyset \} \) of the poset \((2^{B-(b)}, \subseteq) \) to a maximal chain \(K \) of \((2^{B-(b)}, \subseteq) \). Since \(G \) is finite, then \(\bigcap G_x \) is open for each \(x \in V \) and each element of the poset \(\{ (G_x : x \in V), \subseteq \} = \{ (G_x : x \in V) \) is preceded by some minimal element of \(\{ G_x : x \in V \} \). Since \(P \) is monotone and \(B \) is \(P \)-independent, it follows that each subset of \(B \) is \(P \)-independent. Hence, since \(\emptyset \in K \) and \(P(\emptyset) = \emptyset \), it follows that the collection \(H \) of all \((\bigcap G_u) \cap [V-P(X)] \) such that \(G_x \) is a minimal element of \(\{ G_y : y \in V \} \) and \(X \in K \) is an open refinement of \(G \). Assume that \(x \in V \). Choose a minimal element \(G_x \) of \(\{ G_y : y \in V \} \) such that \(G_x \subseteq G_e \). Then \(\bigcap G_x \subseteq \bigcap G_e \) while \(x \in \bigcap G_x \). It follows that the elements of \(H_x \) are among the sets \(\{ (\bigcap G_u) \cap [V-P(X)] \) such that \(X \in K \) and \(G_y \) is a minimal element of \(\{ G_z : z \in V \} \) while \(|\{ V-P(X) : X \in K \}| = |B| \). Therefore, \(|H_x| \leq |B| \). Let \(H_B = H \). The proof is complete.

Theorem 2. If \(V \) is a metric space and \(P \) has property (*) while \(B \) is a finite \(P \)-basis of \(V \), then there is a finite \(P \)-basis \(G_B \) of \(V \) such that if \(H \) is an open refinement of \(G_B \), then \(|H_x| \geq |B| \) for some \(x \in V \).

Proof. Assume that \(V \) is a metric space such that \(P \) has property (*) while \(B \) is a finite \(P \)-basis of \(V \). If \(B = \emptyset \) or \(B = \{ x \} \) for some \(x \in V \), then let \(G_B = \{ V \} \). Consider the case that \(|B| > 1 \). Let \(n \) be a positive integer such that \(|B| = n+1 \). Let \(B \) consist of exactly \(n+1 \) elements \(x_i \) of \(V \), with \(1 \leq i \leq n+1 \). Let \(B_{n+1} = B \). If \(0 \leq k \leq n \), then let \(B_{n-k} = X_{(n-k)+1} - \{ x_{n-k} \} \).

Let \(r \) be a positive real number. Let \(G \) consist of precisely the following sets: \(P(X_k)_r \), with \(1 \leq k \leq n \) and \(X_0 = \emptyset \). Since \(P(Z) \) is closed for each \(Z \subseteq V \), it follows that \(G \) is a finite collection of open subsets of \(V \). Consider any element \(x \) of \(V \). If \(x \in P(X_1) \), then \(x \in [P(X_1)_r-P(X_{k-1})] \subseteq G \). If \(x \notin P(X_1) \), let \(m \) be the largest positive integer such that \(x \in P(X_m) \), so that \(x \in [P(X_m+1)_r-P(X_m)] \subseteq G \). It follows that \(G \) is a finite open covering of \(V \). Assume that \(H \) is an open refinement of \(G \). If \(1 \leq k \leq n+1 \), let \(H_k \) be the collection of all \(X \subseteq H \) such that \(x \in X \) for some \(x \in [P(X_k)_r-P(X_{k-1})] \). Since \(x \in [P(X_1)_r-P(X_0)] \), then \(H_1 \) contains an element \(Y_1 \). It follows from (*) that \(Y_1 \in P(X_1)_r \) contains an element \(y_1 \) of \(P(X_1) \), so that \(y_1 \in [P(X_2)_r-P(X_1)] \). Hence \(y_1 \in Y_2 \) for some \(y_2 \in H_2 \) such that \(y_2 \notin H_1. \) If \(n \geq 2 \), then it follows from (*) that \((Y_1 \cap Y_2)_r-P(X_2) \) contains an element \(y_2 \) of \(P(X_2) \), so that \(y_2 \in [P(X_3)_r-P(X_2)] \) and \(y_2 \notin [P(X_3)_r-P(X_{i-1})] \) if \(1 \leq i \leq 2 \). It follows by induction that there is a collection \(\{ Y_i : 1 \leq i \leq n \} \) of elements of \(H \) such that \(1 \leq k \leq n \) and \(\{ Y_i : 1 \leq i \leq k \} \) contains an element \(y_k \) of \(P(X_k)_r \) while \(y_k \notin H_i \) if \(1 \leq i < k \). It follows that \(y_n \in [P(X_{n+1})_r-P(X_n)] \) and \(y_n \notin [P(X_1)_r-P(X_1)] \) if \(1 \leq i \leq n \). Let \(x = y_n \). Then \(x \in Y_{n+1} \) for some \(y_{n+1} \in H_{n+1} \) such that \(y_{n+1} \notin H_i \) if \(1 \leq i \leq n \). It follows that \(\{ Y_i : 1 \leq i \leq n+1 \} \subseteq H_n \), so that \(|H_n| \geq n+1 \). Therefore, \(|H_n| \geq |B| \) for some \(y \in V \). The proof is complete.
Theorem 3. If V is a metric space and P has property (\ast) while B is a finite P-basis of V, then $\dim_P V = |B| - 1$.

Proof. Suppose that V is a metric space such that P has property (\ast) while B is a finite P-basis of V. It follows from Theorem 1 that if G is a finite open covering of V, then there is an open refinement H_B of G such that $|(H_B)_x| \leq |B|$ for each $x \in V$. Application of Theorem 2 yields a finite open covering G_B of V such that if H is an open refinement of G_B, then $|H_x| \geq |B|$ for some $x \in V$. Therefore, $\dim_P V = |B| - 1$. The proof is complete.

Corollary. If V is a metric space and P has property (\ast) while V has a finite P-basis and P-dim V exists, then $\dim_P V = [P \text{-dim } V] - 1$.

The linear variety structure Q in E^n is a closure structure having the exchange property and property (\ast), Q-dim E^n exists and E^n has a finite Q-basis of exactly $n+1$ elements. Therefore, $\dim_Q E^n = n$.

References

Department of Mathematics, Stillman College, Tuscaloosa, Alabama 35401