Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Common fixed points for semigroups of mappings


Authors: Anthony T. Lau and Chi Song Wong
Journal: Proc. Amer. Math. Soc. 41 (1973), 223-228
MSC: Primary 54H15; Secondary 47H10
DOI: https://doi.org/10.1090/S0002-9939-1973-0322837-3
MathSciNet review: 0322837
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ X$ be a compact convex subset of a strictly convex Banach space. Let $ S$ be a Hausdorff topological semigroup which is either left amenable or left reversible. Then for any generalised nonexpansive (jointly) continuous action of $ S$ on $ X,X$ contains a common fixed point of $ S$.


References [Enhancements On Off] (What's this?)

  • [1] M. M. Day, Amenable semigroups, Illinois J. Math. 1 (1957), 509-544. MR 19, 1067. MR 0092128 (19:1067c)
  • [2] K. deLeeuw and I. Glickberg, Application of almost periodic compactification, Acta. Math. 105 (1961), 63-97. MR 24 #A1632. MR 0131784 (24:A1632)
  • [3] R. DeMarr, Common fixed points for commuting contraction mappings, Pacific J. Math. 13 (1963), 1139-1141. MR 28 #2446. MR 0159229 (28:2446)
  • [4] M. Edelstein, On fixed and periodic points under contractive mappings, J. London Math. Soc. 37 (1962), 74-79. MR 24 #A2936. MR 0133102 (24:A2936)
  • [5] E. E. Granirer, Extremely amenable semigroups, Math. Scand. 17 (1965), 177-197. MR 33 #5760. MR 0197595 (33:5760)
  • [6] G. Hardy and T. Roger, A generalisation of a fixed point theorem of S. Reich, Canad. Math. Bull. (to appear). MR 0324495 (48:2847)
  • [7] R. D. Holmes and A. Lau, Nonexpansive actions of topological semigroups and fixed points, J. London Math. Soc. 5 (1972), 330-336. MR 0313895 (47:2447)
  • [8] R. Kannan, Some results on fixed points. II, Amer. Math. Monthly 76 (1969), 405-408. MR 41 #2487. MR 0257838 (41:2487)
  • [9] A. T. Lau, Invariant means on subsemigroups of locally compact groups, Rocky Mountain J. Math. 3 (1973), 77-81. MR 0326296 (48:4640)
  • [10] -, Invariant means on almost periodic functions and fixed point properties, Rocky Mountain J. Math. 3 (1973), 69-76. MR 0324313 (48:2665)
  • [11] T. Mitchell, Fixed points of reversible semigroups of nonexpansive maps, Kodai Math. Sem. Rep. 22 (1970), 322-323. MR 42 #2316. MR 0267414 (42:2316)
  • [12] T. Mitchell, Topological semigroups and fixed points, Illinois J. Math. 14 (1970), 630-641. MR 42 #5245. MR 0270356 (42:5245)
  • [13] I. Namioka, On certain actions of semi-groups on $ L$-spaces, Studia Math. 29 (1967), 63-77. MR 36 #6910. MR 0223863 (36:6910)
  • [14] S. Reich, Some remarks concerning contractive mappings, Canad. Math. Bull. 14 (1971), 121-124. MR 45 #1145. MR 0292057 (45:1145)
  • [15] W. Takahashi, Fixed point theorem for amenable semigroup of nonexpansive mappings, Kodai Math. Sem. Rep. 21 (1969), 383-386. MR 41 #7501. MR 0262896 (41:7501)
  • [16] Chi Song Wong, Fixed point theorems on compact Hausdorff spaces (to appear).
  • [17] -, Fixed points of generalised nonexpansive mappings on an into Proc. Amer. Math. Soc. (to appear).

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 54H15, 47H10

Retrieve articles in all journals with MSC: 54H15, 47H10


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1973-0322837-3
Keywords: Common fixed points, equicontinuous mapping, generalized nonexpansive mapping, left amenable topological semigroup, left reversible topological semigroup, strictly convex Banach space, strongly almost periodic function
Article copyright: © Copyright 1973 American Mathematical Society

American Mathematical Society