Weakly continuous nonlinear accretive operators in reflexive Banach spaces

Author:
W. E. Fitzgibbon

Journal:
Proc. Amer. Math. Soc. **41** (1973), 229-236

MSC:
Primary 47H15; Secondary 34G05

DOI:
https://doi.org/10.1090/S0002-9939-1973-0324496-2

MathSciNet review:
0324496

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let be a reflexive space and be a weakly continuous (possibly nonlinear) operator which maps to . We are concerned with the autonomous differential equation

**[1]**M. Crandall and T. Liggett,*Generation of semigroups of nonlinear transformations on general Banach spaces*, Amer. J. Math.**93**(1971), 265-298. MR**44**#4563. MR**0287357 (44:4563)****[2]**S. Chow and J. D. Schuur,*An existence theorem for ordinary differential equations in Banach spaces*, Bull. Amer. Math. Soc.**77**(1971), 1018-1020. MR**44**#4334. MR**0287127 (44:4334)****[3]**E. Hille and R. S. Phillips,*Functional analysis and semi-groups*, rev. ed., Amer. Math. Soc. Colloq. Publ., vol. 31, Amer. Math. Soc., Providence, R.I., 1957. MR**19**, 664. MR**0089373 (19:664d)****[4]**T. Kato,*Accretive operators and nonlinear evolution equations in Banach spaces*, Proc. Sympos. Pure Math., vol. 18, Part 1, Amer. Math. Soc., Providence, R.I., 1970, pp. 138-161. MR**42**#6663. MR**0271782 (42:6663)****[5]**-,*Nonlinear semigroups and evolution equations*, J. Math. Soc. Japan**19**(1967), 508-520. MR**37**#1820. MR**0226230 (37:1820)****[6]**R. H. Martin,*A global existence theorem for autonomous differential equations in a Banach space*, Proc Amer. Math. Soc.**26**(1970), 307-314. MR**41**#8791. MR**0264195 (41:8791)****[7]**J. W. Neuberger,*An exponential formula for one-parameter semigroups of nonlinear transformations*, J. Math. Soc. Japan**18**(1966), 154-157. MR**34**#622. MR**0200734 (34:622)****[8]**S. Ôharu,*Note on the representation of semigroups on nonlinear operators*, Proc. Japan Acad.**42**(1966), 1149-1154. MR**36**#3167. MR**0220100 (36:3167)****[9]**G. F. Webb,*Continuous nonlinear perturbations of linear accretive operators in Banach spaces*, J. Functional Analysis**10**(1972), 191-203. MR**0361965 (50:14407)****[10]**C. Yen,*The convergence, periodicity and rest point behaviour of orbits in nonlinear semigroups of contractions*, Pacific J. Math. (to appear).

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
47H15,
34G05

Retrieve articles in all journals with MSC: 47H15, 34G05

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1973-0324496-2

Keywords:
Accretive,
weakly continuous,
semigroup of nonexpansive nonlinear operators

Article copyright:
© Copyright 1973
American Mathematical Society