Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

Residually $ F\sb{p}$-groups, for many primes $ p$, are orderable


Author: A. H. Rhemtulla
Journal: Proc. Amer. Math. Soc. 41 (1973), 31-33
MSC: Primary 06A55
MathSciNet review: 0332615
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: It is proved that if $ G$ is a residually finite $ p$-group, for infinitely many primes $ p$, then $ G$ can be linearly ordered.


References [Enhancements On Off] (What's this?)

  • [1] G. Baumslag, Wreath products and extensions, Math. Z. 81 (1963), 286-299. MR 27 #1503. MR 0151518 (27:1503)
  • [2] L. Fuchs, Partially ordered algebraic systems, Pergamon Press, Oxford-London-New York-Paris; Addison-Wesley Publishing Co., Inc., Reading, Mass.-Palo Alto, Calif.-London, 1963. MR 0171864

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 06A55

Retrieve articles in all journals with MSC: 06A55


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9939-1973-0332615-7
Keywords: Residually finite $ p$-groups, ordered groups, free polynilpotent groups
Article copyright: © Copyright 1973 American Mathematical Society