Let F_π denote the class of finite p-groups. It is well known that free groups and free polynilpotent groups are residually F_π for all primes p. It is also known that such groups can be linearly ordered ([2, p. 49], [1, Theorem 4]). The purpose of this note is to prove the following general result on the orderability of residually F_π-groups.

Theorem. If G is locally a residually F_π-group for infinitely many primes p, then G can be linearly ordered.

To prove the Theorem we shall need the following result.

Lemma. Let α_{ij} ($i=1, \cdots, 2^n; j=1, \cdots, n$) be nonnegative integers such that $\sum_{j=1}^{2^n} \alpha_{ij}>0$ for all i. Let p be a prime such that $p \geq (2\alpha)^{2^n}$ where $\alpha=\max\{\alpha_{ij}\}$. Then in any solution set to the system of 2^n equations

$$
\sum_{j=1}^{2^n} \varepsilon_{ij} \alpha_{ij} x_j \equiv 0 \pmod{p}
$$

for some j. Assume the result holds for $n-1$ and let $n=m$. Let $d=2^{m-1}$ and for any integer r let $r'=d+r$. By renumbering the 2^m equations, if necessary, assume that $\varepsilon_{i1}=1$, $\varepsilon_{r1}=-1$ and $\varepsilon_{ij}=\varepsilon_{rj}$ for all $i \in \{1, \cdots, d\}$ and $j>1$. We produce a system of d equations in $m-1$ unknowns satisfying the hypotheses of the Lemma as follows. For any $r \in \{1, \cdots, d\}$ we have

$$
\alpha_{r1} x_1 + \sum_{j=2}^{m} \varepsilon_{rj} \alpha_{rj} x_j \equiv 0 \pmod{p},
$$

Received by the editors March 5, 1973.

Key words and phrases. Residually finite p-groups, ordered groups, free polynilpotent groups.

Research supported by the National Research Council of Canada Grant No. A-5299.
and

\[-\alpha_r x_1 + \sum_{j=2}^{m} \varepsilon_{ij} \alpha_{rj} x_j \equiv 0 \pmod{p}. \]

As the \(r \)th equation of the new system pick: I if \(\alpha_{r1} = 0 \); II if \(\alpha_{r1} \neq 0 \) but \(\sum_{j=2}^{m} \varepsilon_{ij}(\alpha_{r1}\alpha_{rj} + \alpha_{r1}\alpha_{rj})x_j \equiv 0 \pmod{p} \) if \(\alpha_{r1} \neq 0 \) and \(\alpha_{r1} \neq 0 \). Notice that for any \(r \) if \(\sum_{j=2}^{m} \alpha_{rj} = 0 \) then \(x_1 \equiv 0 \pmod{p} \) and the Lemma is proved. Thus we may assume that at least one coefficient of the \(r \)th equation of the new system is positive. Let \(\beta \) be the maximum of the coefficients of the new system of equations. Then \(\beta \leq (2\alpha)^2 \) so that \(p \geq (2\alpha)^{2^n} = (4\alpha^2)^{2^{m-1}} \geq (2\beta)^{2^{m-1}} \). Thus the hypotheses of the Lemma are satisfied for this system and, by induction, \(x_j \equiv 0 \pmod{p} \) for some \(j \).

Proof of the Theorem. We use a characterization of ordered groups given by Fuchs [2, p. 34]. If \(x \) is an element of a group \(G \) and \(\alpha \) a non-negative integer, we write \([x]^\alpha \) to denote a product of \(\alpha \) conjugates of \(x \) in \(G \).

Suppose, if possible, that the Theorem is false. Then there exist elements \(x_i \in G \) for \(i = 1, \ldots, n \) in \(G \) such that

\[[x_i^{\varepsilon_{ij}}]^{a_1} \cdots [x_n^{\varepsilon_{ijn}}]^{a_n} = e \]

for \(2^n \) values of \(i \) associated with signs \(\varepsilon_{ij} \equiv \pm 1 \). Moreover \(\sum_{i=1}^{n} \alpha_{ij} > 0 \) for all \(i \). Assume that \(n \) is the least such integer. Let \(\alpha = \max \{ \alpha_{ij} \} \). We can assume that \(G \) is generated by the finite set of elements involved in the equations given by (1), so that \(G \) is residually \(F_p \) for infinitely many \(p \). Choose a prime \(p > (2\alpha)^{2^n} \) such that \(G \) is residually \(F_p \) for this prime. Let \(X = \langle x_1^{a_1}, \ldots, x_n^{a_n} \rangle \), the normal subgroup of \(G \) generated by \(x_1, \ldots, x_n \). There exists \(K \triangleleft G \) maximal subject to \(G/K \in F_p, X \subseteq K \).

Let \(\theta \) be the homomorphism \(G \rightarrow G/K = G^* \), and let \(\theta(x_i) = a_i, \theta(X) = A \). Then \(G^* \in F_p, A \neq \{e\} \), and, by our choice of \(K, A \) is a minimal normal subgroup of \(G^* \). Thus \(A \) is cyclic of order \(p \) in the centre of \(G^* \). By reordering the suffixes, if necessary, assume that \(A = \langle a_1 \rangle, a_j = a_j^\beta_j \) where \(\beta_1 = 1, 0 < \beta_j < p \) for \(j = 2, \ldots, m \) and \(\beta_j = 0 \) for \(j > m \). The \(2^n \) equations given by (1) now reduce to the following.

\[a_1^{(\sum_{j=1}^{m} \varepsilon_{ij} \alpha_{ij} \beta_j)} = e, \quad j = 1, \ldots, m, i = 1, \ldots, 2^n. \]

If \(m < n \), then from the \(2^n \) equations above choose \(2^m \) equations associated with the \(2^m \) choices of signs \(\varepsilon_{ij} = \pm 1 \) \((j = 1, \ldots, m)\) in such a way that for each \(i \in \{1, \ldots, 2^m\} \) at least one \(\alpha_{ij} \neq 0 \) in this set of \(2^m \) equations. This is possible by our choice of \(n \). The above equations now reduce to

\[\sum_{j=1}^{m} \varepsilon_{ij} \alpha_{ij} \beta_j \equiv 0 \pmod{p}, \quad i = 1, \ldots, 2^m. \]
The above equations satisfy the hypotheses of the Lemma and hence
\[\beta_j \equiv 0 \pmod{p} \] for some \(j \in \{1, \ldots, m\} \). This is a contradiction and the
Theorem is proved.

REFERENCES

MR 27 #1503.

2. L. Fuchs, Partially ordered algebraic systems, Pergamon Press, New York;

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ALBERTA, EDMONTON, ALBERTA,
CANADA