Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Semilattice congruences viewed from quasi-orders


Author: Takayuki Tamura
Journal: Proc. Amer. Math. Soc. 41 (1973), 75-79
MSC: Primary 20M10
DOI: https://doi.org/10.1090/S0002-9939-1973-0333048-X
MathSciNet review: 0333048
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ S$ be a semigroup. This paper proves that the smallest semilattice congruence $ {\rho _0}$ containing a compatible binary relation $ \xi $ on $ S$ equals the natural equivalence of the smallest lower-potent positive quasi-order $ {\sigma _0}$ containing $ \xi $.


References [Enhancements On Off] (What's this?)

  • [1] M. S. Putcha, Minimal sequences in semigroups (to appear). MR 0338233 (49:2999)
  • [2] T. Tamura, The theory of construction of finite semigroups. I, Osaka Math. J. 8 (1956), 243-261. MR 18, 717. MR 0083497 (18:717e)
  • [3] -, Another proof of a theorem concerning the greatest semilattice-decomposition of a semigroup, Proc. Japan Acad. 40 (1964), 777-780. MR 31 #3530. MR 0179282 (31:3530)
  • [4] -, The theory of operations on binary relations, Trans. Amer. Math. Soc. 120 (1965), 343-358; errata, ibid. 123 (1966), 273. MR 35 #273. MR 0209375 (35:273)
  • [5] -, Note on the greatest semilattice decomposition of a semigroup, Semigroup Forum 4 (1972), 255-261. MR 0307990 (46:7105)
  • [6] -, Quasi-orders, generalized archimedeaness and semilattice decomposition (to appear).

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 20M10

Retrieve articles in all journals with MSC: 20M10


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1973-0333048-X
Keywords: (Smallest) semilattice congruence, quasi-orders, lower-potent, positive, half-congruences, compatible, natural equivalences, natural quasi-orders, attainability of semilattice
Article copyright: © Copyright 1973 American Mathematical Society

American Mathematical Society