THE APPROXIMATION PROPERTY DOES NOT IMPLY THE BOUNDED APPROXIMATION PROPERTY

T. FIGIEL AND W. B. JOHNSON

Abstract. There is a Banach space which has the approximation property but fails the bounded approximation property. The space can be chosen to have separable conjugate, hence there is a nonnuclear operator on the space which has nuclear adjoint. This latter result solves a problem of Grothendieck [2].

1. Introduction. Let $(X, \| \cdot \|)$ be a Banach space. We show that if there is a constant λ so that $(X, \| \cdot \|)$ has the λ-metric approximation property (λ-m.a.p., in short) for each equivalent norm $\| \cdot \|$ on X, then X^* has the bounded approximation property (b.a.p., in short). This result is used to construct an example of a Banach space which possesses the approximation property (a.p.) but fails the b.a.p.

For ε, λ positive constants, we say that X has the (ε, λ)-m.a.p. provided that, for each finite dimensional subspace Z of X and each $\delta > 0$, there is a finite rank operator T on X so that $\| T \| \leq \lambda + \delta$ and $\| Tz - z \| \leq (\varepsilon + \delta) \| z \|$ for each $z \in Z$. An intermediate step in our construction is that if X has the (ε, λ)-m.a.p. for some $\varepsilon, 0 < \varepsilon < 1$, then X has the $\lambda(1 - \varepsilon)^{-1}$-m.a.p.

We use the standard notation in Banach space theory. Let us only recall the types of approximation conditions a Banach space X may satisfy. X has the a.p. if for each compact subset K of X and $\varepsilon > 0$, there is a finite rank operator (= bounded, linear operator) T on X so that $\| Tk - k \| \leq \varepsilon$ for each $k \in K$. If always T can be chosen with $\| T \| \leq \lambda$ then X is said to have the λ-m.a.p. A space which has the λ-m.a.p. for some λ is said to have the b.a.p. For equivalent formulations of these definitions (which we use without further reference) the reader is referred to [2] and [4].

We wish to thank Professor A. Pelczyński for a revision of an earlier incorrect proof of the main result. Pelczyński's description [6] led us to the proof presented here.

Received by the editors January 18, 1973 and, in revised form, February 23, 1973.

Key words and phrases. Approximation property, nuclear operators.

1 The second author was supported in part by NSF GP-33578.
II. Implications among approximation conditions. Given a Banach space \((X, \| \cdot \|)\), let \(\mathcal{A}\) be the family of equivalent norms, \(\| \cdot \|\), on \(X\) whose dual norms on \(X^*\) are of the form \(\|x^*\| = \|x^*\| + MD(x^*, Z)\). Here \(M\) ranges over positive constants, \(Z\) ranges over finite dimensional subspaces of \(X^*\), and \(d(x^*, Z) = \inf \{\|x^* - z\| : z \in Z\}\) is the \(\| \cdot \|\)-distance of \(x^*\) to \(Z\). Since finite dimensional subspaces of \(X^*\) are weak* closed, it is evident that each such norm on \(X^*\) is the dual of an equivalent norm on \(X\).

Proposition 1. Suppose that \((X, \| \cdot \|)\) has the \(\lambda\)-m.a.p. for each norm, \(\| \cdot \|\), in \(\mathcal{A}\). Let \(0 < \varepsilon < 1\). Then \((X^*, \| \cdot \|)\) has the \((\varepsilon, \lambda [1 + 2\varepsilon^{-1}]\)-m.a.p.

Proof. Suppose that \(Z\) is a finite dimensional subspace of \(X^*\). Let \(\delta > \lambda\) and \(\delta > 0\). Define \(\| \cdot \|\) on \(X^*\) by \(\|x^*\| = \|x^*\| + 2\varepsilon^{-1}\beta d(x^*, Z)\).

Pick a finite dimensional subspace \(Y \subset X\) such that for each \(z \in Z\), \(\|z\| \leq (1 + \delta)\sup \{\|y\| : y \in Y, \|y\| \leq 1\}\). Since \((X, \| \cdot \|)\) has the \(\lambda\)-m.a.p., there is a finite rank operator \(T\) on \(X\) so that \(Ty = y\) for \(y \in Y\) and \(\|T\| \leq \beta\).

We have, for \(x^* \in X^*\),
\[
\|T^*x^*\| + 2\varepsilon^{-1}\beta d(T^*x^*, Z) \leq \beta [\|x^*\| + 2\varepsilon^{-1}\beta d(x^*, Z)].
\]
Hence \(\|T^*x^*\| \leq \beta (1 + 2\varepsilon^{-1}\beta)\|x^*\|\) whence \(\|T\| \leq \beta (1 + 2\varepsilon^{-1}\beta)\). Now for \(z \in Z\), \(2\varepsilon^{-1}\beta d(T^*z, Z) \leq \beta \|z\|\) so there exists \(w \in Z\) satisfying \(\|T^*z - w\| \leq \frac{1}{2}\varepsilon \|z\|\). But for \(y \in Y\), \((T^*z)y = z(Ty) = z(y)\), and thus \(\sup \{\|z(y) - w(y)\| : y \in Y, \|y\| \leq 1\} \leq \frac{1}{2}\varepsilon \|z\|\). Therefore \(\|z - w\| \leq \frac{1}{2}\varepsilon (1 + \delta)\|z\|\), from which it follows that
\[
\|T^*z - z\| \leq \left[\frac{1}{2}\varepsilon (1 + \delta) + \frac{1}{2}\varepsilon \right] \|z\| \leq (1 + \delta)\varepsilon \|z\|.
\]
Since \(\delta > 0\), \(\beta > \lambda\) are arbitrary, the conclusion follows.

Proposition 2. Suppose \((X, \| \cdot \|)\) has the \((\varepsilon, \lambda)\)-m.a.p. with \(\varepsilon < 1\). Then \(X\) has the \((1 - \varepsilon)^{-1}\lambda\)-m.a.p.

Proof. We thank Professor W. J. Davis for the proof given here. Davis’ proof is rather more revealing than proofs discovered by us.

Suppose \(Z\) is a finite dimensional subspace of \(X\). Let \(0 < \varepsilon < \delta < 1\) and \(\beta > \lambda\).

Construct by induction finite rank operators \(T_n\) on \(X\) so that
\[
\|T_1z - z\| \leq \delta \|z\| \quad \text{for } z \in Z, \quad \|T_{n+1}z - z\| \leq \delta \|z\|
\]
for \(z \in \text{span } Z \cup T_nX \cup T_{n-1}X \cup \cdots \cup T_1X\), and \(\|T_n\| \leq \beta\).

Define \(S_n\) by \(I - S_n = (I - T_n)(I - T_{n-1}) \cdots (I - T_1)\). Then for \(z \in Z\), \(\|(I - S_n)z\| \leq \delta^n \|z\|\). Also,
\[
S_n = (I - T_n)(I - T_{n-1}) \cdots (I - T_3)T_1 + (I - T_n)(I - T_{n-1}) \cdots (I - T_3)T_2 + \cdots + (I - T_n)T_{n-1} + T_n,
\]
so that \(\|S_n\| \leq \delta^n \beta + \cdots + \delta \beta + \beta < (1 - \delta)^{-1}\beta\).
Hence X has the $(\tau, (1-\delta)^{-1}\beta)$-m.a.p. for each $\tau>0$, $\delta>\varepsilon$ and $\beta>\lambda$, whence X has the $(1-\varepsilon)^{-1}\lambda$-m.a.p.

Setting $\varepsilon=\frac{1}{2}$ in the above two propositions yields:

Theorem 1. If, for each $\|\cdot\|$ in \mathcal{A}, $(X, \|\cdot\|)$ has the λ-m.a.p., then X^* has the $2\lambda(1+4\lambda)$-m.a.p.

Remark 1. If X^* has the λ-m.a.p. then for each $\|\cdot\|$ in \mathcal{A}, $(X^*, \|\cdot\|)$ has the λ-m.a.p. (hence also $(X, \|\cdot\|)$ has the λ-m.a.p.). For if $|x^*|=\|x^*\|+M d(x^*, Z)$, Y is a finite dimensional subspace of X^*, and $\varepsilon>0$, then there is a finite rank operator T on X^* so that $\|T\|\leq\lambda+\varepsilon$ and $Tx^*=x^*$ for $x^*\in$ span $Y\cup Z$. Since T is the identity on Z, $|T|\leq\|T\|\leq\lambda+\varepsilon$.

Remark 2. It is known [3, Theorem 4] that if $(X, \|\cdot\|)$ has the 1-m.a.p. for each $\|\cdot\|$ in \mathcal{A}, then X^* has the 1-m.a.p. We do not know whether a similar result is true with "1" replaced by "\lambda". It may even be true that if X^* has the b.a.p., then X^* also has the 1-m.a.p. This is the case when X^* is separable [4, Remark 4.11].

Example. There is a Banach space which has the a.p. but fails the b.a.p.

Proof. Of course, we need the important result of Enflo [1] that there is a Banach space which fails the a.p. Lindenstrauss [5] (see [3] for a specific example) had shown that a consequence of this is the existence of a Banach space X which possesses the 1-m.a.p., but whose conjugate fails the a.p. By Theorem 1, there is a sequence $(\|\cdot\|_n)$ of equivalent norms on this X so that $(X, \|\cdot\|_n)$ fails the n-m.a.p. Thus $(\Sigma(X, \|\cdot\|_n))_{l_2}$ fails the b.a.p. but possesses the a.p.

Note that $(\Sigma(X, \|\cdot\|_n))_{l_2}$ can be chosen to have separable conjugate, since Lindenstrauss' construction can yield an X with X^* separable.

III. Nonnuclear operators with nuclear adjoints. The example constructed in §II justifies the following proposition.

Proposition 3. If a Banach space X has the a.p. but fails the b.a.p., and X^* is separable, then there is a nonnuclear operator T on X such that T^* is nuclear.

Since the proof is an almost immediate consequence of results of [2], we give only some indications.

Let $N(X)$ denote the space of nuclear operators on X [2, Definition 4] and $L_0(X)$ the space of finite rank operators on X. Since the weak*-continuous nuclear operators form a closed subset of $N(X^*)$, it is enough to show that $\{T^*: T\in N(X)\}$ is not closed in $N(X^*)$.

Consider the natural mappings $X^*\hat{\otimes} X^*\to N(X)^*\to [L_0(X)]^*\rightarrow N(X^*)$. Here $\chi(T)S=\text{trace } ST$ and $\psi(T)S=\text{trace } (TS^*)$.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
Observe that
(i) \(\varphi \) is an isometry onto, because \(X \) has the a.p. (cf. [2, Proposition 35, \(A \Rightarrow B_1 \)]).
(ii) \(\chi \varphi \) is not an isomorphic embedding, for otherwise (cf. [2, Proposition 39, proof of \(B_1 \Rightarrow A_1 \)]) \(X \) would have the b.a.p.
(iii) \(\psi \) is an isometry onto. For given \(F \in L_0(X)^* \), consider the factorization (cf. [2, Proposition 27, (a) \(\Rightarrow \) (d)]) \(X^* \to L_\infty \to L_1 \to X^* \) of the operator induced on \(X^* \) by \(F \). \(X^* \) is separable, so the Dunford-Pettis theorem yields (cf. [2, Lemma 9]) that \(L_\infty \to L_1 \to X^* \) is nuclear.

Since (i), (ii), and (iii) imply that the range of \(\psi^{-1} \chi \) is not closed, it only remains to observe that \(\psi^{-1} \chi(T) = T^* \) for each \(T \in N(X) \).

References

Institute of Mathematics, Polish Academy of Sciences, Warsaw, Poland

Department of Mathematics, Ohio State University, Columbus, Ohio 43210

Current address (T. Figiel): Department of Mathematics, Ohio State University, Columbus, Ohio 43210