Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Measurability of lattice operations in a cone

Author: Kohur Gowrisankaran
Journal: Proc. Amer. Math. Soc. 41 (1973), 237-240
MSC: Primary 46A40
MathSciNet review: 0346479
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ X$ be a locally convex Hausdorff topological vector space and $ C$ a convex cone generating $ X$ such that $ C$ is a lattice in its own order. Under suitable conditions $ (x,y) \to \sup (x,y)$ and $ \inf (x,y)$ are shown to be measurable mappings.

References [Enhancements On Off] (What's this?)

  • [1] K. Gowrisankaran, Integral representation for a class of multiply superharmonic functions, Ann. Inst. Fourier (Grenoble) 23 (1973), fasc. 4. MR 0335838 (49:616)
  • [2] J. L. Kelley, I. Namioka, et al., Linear topological spaces, University Series in Higher Math., Van Nostrand, Princeton, N.J., 1963. MR 29 #3851. MR 0166578 (29:3851)
  • [3] A. L. Peressini, Ordered topological vector spaces, Harper & Row, New York, 1967. MR 37 #3315. MR 0227731 (37:3315)
  • [4] H. H. Schaefer, Topological vector spaces, Macmillan, New York, 1966. MR 33 #1689. MR 0193469 (33:1689)
  • [5] L. Schwartz, Radon measures on general topological spaces, Tata Institute of Fundamental Research Monographs (to appear). MR 0426084 (54:14030)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46A40

Retrieve articles in all journals with MSC: 46A40

Additional Information

Keywords: Ordered vector space, cone, lattice, compact base, Borel function
Article copyright: © Copyright 1973 American Mathematical Society

American Mathematical Society