Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

The interval of disk packing exponents


Author: J. B. Wilker
Journal: Proc. Amer. Math. Soc. 41 (1973), 255-260
MSC: Primary 52A45
DOI: https://doi.org/10.1090/S0002-9939-1973-0350628-6
MathSciNet review: 0350628
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The set of disk packing exponents is an interval equal to $ (E,2]$ or $ [E,2]$. The set of triangle packing exponents is $ [{\log _2}3,2]$. The analogy strongly suggests that $ E$ is attained and that $ E = S$, the osculatory exponent whose value is known to lie in the interval $ 1.0300197 < S < 1.314534$.


References [Enhancements On Off] (What's this?)

  • [1] D. W. Boyd, Lower bounds for the disk-packing constant, Math. Comp. 24 (1970), 697-704. MR 43 #3924. MR 0278193 (43:3924)
  • [2] -, Osculatory packings by spheres, Canad. Math. Bull. 13 (1970), 59-64. MR 41 #4387. MR 0259754 (41:4387)
  • [3] -, Disk packings which have non-extreme exponents, Canad. Math. Bull. 15 (1972), 341-344. MR 0313945 (47:2497)
  • [4] -, On the exponent of an osculatory packing, Canad. J. Math. 23 (1971), 355-363. MR 42 #6723. MR 0271842 (42:6723)
  • [5] -, The disk-packing constant, Aequationes Math. 7 (1971), 182-193. MR 0303420 (46:2557)
  • [6] -, Improved bounds for the disk-packing constant, Aequationes Math. (to appear). MR 0317180 (47:5728)
  • [7] P. J. Davis, Simple quadratures in the complex plane, Pacific J. Math. 15 (1965), 813-824. MR 32 #6114. MR 0188678 (32:6114)
  • [8] H. G. Eggleston, On closest packing by equilateral triangles, Proc. Cambridge Philos. Soc. 49 (1953), 26-30. MR 14, 679. MR 0052810 (14:679e)
  • [9] D. M. E. Foster, On the exponent of the Apollonian packing of circles, J. London Math. Soc. (2) 3 (1971), 281-287. MR 43 #2612. MR 0276872 (43:2612)
  • [10] E. N. Gilbert, Randomly packed and solidly packed spheres, Canad. J. Math. 16 (1964), 286-298. MR 28 #5382. MR 0162183 (28:5382)
  • [11] K. E. Hirst, The Apollonian packing of circles, J. London Math. Soc. 42 (1967), 281-291. MR 35 #876. MR 0209981 (35:876)
  • [12] E. Kasner and F. Supnick, The Apollonian packing of circles, Proc. Nat. Acad. Sci. U.S.A. 29 (1943), 378-384. MR 5, 106. MR 0009128 (5:106e)
  • [13] D. G. Larman, On the Besicovitch dimension of the residual set of arbitrary packed disks in the plane, J. London Math. Soc. 42 (1967), 292-302. MR 35 #877. MR 0209982 (35:877)
  • [14] -, On the exponent of convergence of a packing of spheres, Mathematica 13 (1966), 57-59. MR 34 #1928. MR 0202054 (34:1928)
  • [15] Z. A. Melzak, Infinite packings of disks, Canad. J. Math. 18 (1966), 838-852. MR 34 #3443. MR 0203594 (34:3443)
  • [16] -, On the solid packing constant for circles, Math. Comp. 23 (1969), 169-172. MR 39 #6179. MR 0244866 (39:6179)
  • [17] S. N. Mergelian, Uniform approximations to functions of a complex variable, Uspehi Mat. Nauk 7 (1952), no. 2 (48), 31-122; English transl., Amer. Math. Soc. Transl. (1) 3 (1962), 294-391. MR 14, 547. MR 0051921 (14:547e)
  • [18] F. Soddy, The kiss precise, Nature 137 (1936), 1021.
  • [19] O. Wesler, An infinite packing theorem for spheres, Proc. Amer. Math. Soc. 11 (1960), 324-326. MR 22 #2936. MR 0112078 (22:2936)
  • [20] J. B. Wilker, Open disk packings of a disk, Canad. Math. Bull. 10 (1967), 395-415. MR 35 #6041. MR 0215198 (35:6041)
  • [21] -, Almost perfect packings, Thesis, University of Toronto, 1968.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 52A45

Retrieve articles in all journals with MSC: 52A45


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1973-0350628-6
Keywords: Almost perfect packing, osculatory packing, disk packing exponent, Hausdorff dimension
Article copyright: © Copyright 1973 American Mathematical Society

American Mathematical Society