Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Rund forms over real algebraic function fields in one variable

Author: Richard Elman
Journal: Proc. Amer. Math. Soc. 41 (1973), 431-436
MSC: Primary 10C05; Secondary 12A90
MathSciNet review: 0323718
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The isometry types of rund quadratic forms over an arbitrary real algebraic function field in one variable are completely determined.

References [Enhancements On Off] (What's this?)

  • [1] J. K. Arason and A. Pfister, Beweis des Krullschen Durchschnittsatzes für den Wittring, Invent. Math. 12 (1972), 173-176. MR 45 #3320. MR 0294251 (45:3320)
  • [2] R. Elman, Pfister forms and $ K$-theory of fields, Thesis, University of California, Berkeley, Calif., 1972.
  • [3] R. Elman and T. Y. Lam, Quadratic forms and the $ u$-invariant. I, Math. Z. 131 (1973), 283-304. MR 0323716 (48:2072)
  • [4] J. Hsia and R. P. Johnson, Round and group quadratic forms over global fields, J. Number Theory (to appear). MR 0323717 (48:2073)
  • [5] -, Round and Pfister forms over $ R(t)$ (preprint).
  • [6] W. Scharlau, Quadratic forms, Queen's Papers in Pure and Appl. Math., no. 22, Queen's University, Kingston, Ont., 1969. MR 42 #4574. MR 0269679 (42:4574)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 10C05, 12A90

Retrieve articles in all journals with MSC: 10C05, 12A90

Additional Information

Keywords: Quadratic forms, rund forms, Pfister forms, Witt ring
Article copyright: © Copyright 1973 American Mathematical Society

American Mathematical Society