Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

The Baire order of the functions continuous almost everywhere


Author: R. D. Mauldin
Journal: Proc. Amer. Math. Soc. 41 (1973), 535-540
MSC: Primary 26A21
DOI: https://doi.org/10.1090/S0002-9939-1973-0323966-0
MathSciNet review: 0323966
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ \Phi $ be the family of all real-valued functions defined on the unit interval $ I$ which are continuous except for a set of Lebesgue measure zero. Let $ {\Phi _0}$ be $ \Phi $ and for each ordinal $ \alpha $, let $ {\Phi _\alpha }$ be the family of all pointwise limits of sequences taken from $ \bigcup\nolimits_{\gamma < \alpha } {{\Phi _\gamma }} $ Then $ {\Phi _{{\omega _1}}}$ is the Baire family generated by $ \Phi $. It is proven here that if $ 0 < \alpha < {\omega _1}$, then $ {\Phi _\alpha } \ne {\Phi _{{\omega _1}}}$. The proof is based upon the construction of a Borel measurable function $ h$ from $ I$ onto the Hilbert cube $ Q$ such that if $ x$ is in $ Q$, then $ {h^{ - 1}}(x)$ is not a subset of an $ {F_\sigma }$ set of Lebesgue measure zero.


References [Enhancements On Off] (What's this?)

  • [1] H. Lebesgue, Sur les fonctions représentable analytiquement, J. Math. (6) 1 (1905).
  • [2] C. Kuratowski, Sur les fonctions représentables analytiquement et les ensembles de premiere categorie, Fund. Math. 5 (1924), 75-86.
  • [3] L. V. Kantorovitch, Sur les suites des fonctions presque partout continues, Fund. Math. 17 (1930), 25-28.
  • [4] R. D. Mauldin, On Borel measures and Baire's class 3, Proc. Amer. Math. Soc. 39 (1973), 308-312. MR 0316640 (47:5187)
  • [5] K. Kuratowski, Topologie, Vol. I, PWN, Warsaw, 1958; English transl., Academic Press, New York; PWN, Warsaw, 1966. MR 19, 873; 36 #840. MR 0217751 (36:840)
  • [6] I. Natanson, Theory of functions of a real variable, GITTL, Moscow, 1950; English transl. of 1st ed., vol. 1, Ungar, New York, 1955. MR 12, 598; 16, 804. MR 0039790 (12:598d)
  • [7] R. D. Mauldin, $ \sigma $-ideals and related Baire systems, Fund. Math. 71 (1971), 171-177. MR 45 #2107. MR 0293027 (45:2107)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 26A21

Retrieve articles in all journals with MSC: 26A21


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1973-0323966-0
Keywords: Lebesgue measure zero, Baire class $ \alpha $, universal function, Hilbert cube
Article copyright: © Copyright 1973 American Mathematical Society

American Mathematical Society