Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Asymptotic values and Baire category

Author: Chaim Mida
Journal: Proc. Amer. Math. Soc. 41 (1973), 492-494
MSC: Primary 30A72
MathSciNet review: 0324046
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ f$ be meromorphic in the unit disc, and let $ \alpha $ be a complex number. Given $ \varepsilon > 0$, let $ {T_\varepsilon }(\alpha )$ denote the set of points $ {e^{i\theta }}$ for which the cluster set $ {C_\mathcal{L}}(f,{e^{i\theta }})$ lies in the $ \varepsilon $-neighbourhood of $ \alpha $ for some arc $ \mathcal{L} \to {e^{i\theta }}$. Then a sufficient condition that the set of points on the unit circle at which $ f$ possesses point-asymptotic value $ \alpha $ be of first category is that $ {T_\varepsilon }(\alpha )$ contains no arc for some $ \varepsilon > 0$.

References [Enhancements On Off] (What's this?)

  • [1] E. F. Collingwood and A. J. Lohwater, The theory of cluster sets, Cambridge Tracts in Mathematics and Mathematical Physics, No. 56, Cambridge University Press, Cambridge, 1966. MR 0231999
  • [2] A. J. Lohwater, Some function-theoretic results involving Baire category, Topics in analysis (Colloq. Math. Anal., Jyväskylä, 1970) Springer, Berlin, 1974, pp. 253–259. Lecture Notes in Math., Vol. 419. MR 0377060
  • [3] E. C. Titchmarsh, Han-shu lun, Translated from the English by Wu Chin, Science Press, Peking, 1964 (Chinese). MR 0197687
  • [4] Gordon Thomas Whyburn, Analytic Topology, American Mathematical Society Colloquium Publications, v. 28, American Mathematical Society, New York, 1942. MR 0007095

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 30A72

Retrieve articles in all journals with MSC: 30A72

Additional Information

Article copyright: © Copyright 1973 American Mathematical Society