CHEBYSHEV APPROXIMATION WITH A NULL SPACE
CHARLES B. DUNHAM

Abstract. Chebyshev approximation involving continuous functions vanishing on a closed set \(V \) is considered. The approximating families studied have the betweenness property. Examples are given of such families. A necessary and sufficient condition for uniqueness of best approximations is obtained.

Let \(X \) be a compact space and \(V \) be a closed subset of \(X \). Let \(C(V, X) \) be the space of continuous functions on \(X \) which vanish on \(V \). For \(g \in C(V, X) \) define
\[
\|g\| = \sup\{|g(x)|: x \in X\}.
\]
Let \(\mathcal{G} \) be a subset of \(C(V, X) \). The Chebyshev problem is: Given \(f \in C(V, X) \), find \(G^* \) in \(\mathcal{G} \) to minimize \(e(G) = \|f-G\| \). Such an element \(G^* \) is called a best approximation in \(\mathcal{G} \) to \(f \) on \(X \).

At least two cases of such a problem arise naturally, namely approximation with functions vanishing at zero and approximation with functions decaying to zero at infinity.

A seemingly more general problem is to approximate with functions which agree with \(v \in C(X) \) on a closed subset \(V \) of \(X \). This problem, however, reduces to the previous problem if we subtract \(v \) from all functions.

We consider the best approximation problem and in particular the uniqueness problem if \(\mathcal{G} \) has the betweenness property [1].

Definition. A family \(\mathcal{G} \) of continuous functions is said to have the betweenness property if for any two elements \(G_0 \) and \(G_1 \), there exists a \(\lambda \)-set \(\{H_\lambda\} \) of elements of \(\mathcal{G} \) such that \(H_0 = G_0 \), \(H_1 = G_1 \) and for all \(x \in X \), \(H_\lambda(x) \) is either a strictly monotonic continuous function of \(\lambda \) or a constant, \(0 \leq \lambda \leq 1 \).

Example. Let \(\mathcal{G} \) be a linear subspace of \(C(V, X) \), then \(\mathcal{G} \) has the betweenness property, for a \(\lambda \)-set is given by \(H_\lambda = \lambda G_1 + (1-\lambda)G_0 \).

Example. Let \(P \) be a linear subspace of \(C(V, X) \) and \(Q \) a linear subspace of \(C(X) \) then \(\mathcal{G} = \{pq : p \in P, q \in Q, q > 0 \} \) is in \(C(V, X) \) and has the betweenness property [1, 152].
Lemma. Let σ be a continuous strictly monotonic mapping of the real line into the real line such that $\sigma(0)=0$.

Let $\mathcal{G} \subset C(V, X)$ have the betweenness property. Then

$$\phi(\mathcal{G}) = \{\sigma(G) : G \in \mathcal{G}\} \subset C(V, X)$$

and has the betweenness property.

Proof. Let $\{H_\lambda\}$ be a λ-set for G_0 and G_1. Then $\{\sigma(H_\lambda)\}$ is a λ-set for $\sigma(G_0)$ and $\sigma(G_1)$.

Lemma. Let $\mathcal{G} \subset C(W, X)$ have the betweenness property and $s \in C(V, X)$. Then the set $s\mathcal{G}$ (consisting of products of s and elements of \mathcal{G}) is in $C(W \cup V, X)$ and has the betweenness property.

The previous theory obtained for betweenness [1] gives a characterization of best approximations and an error-determining set on which best approximations agree. We must, however, develop a new theory for uniqueness.

Definition. $\mathcal{G} \subset C(V, X)$ has zero-sign compatibility with null space V if for any two distinct elements G and H, any closed subset Z of the zeros of $G-H$ which contains no points of V and for any $s \in C(V, X)$ taking values -1 or $+1$ on Z, there exists $F \in \mathcal{G}$ such that

$$\text{sgn}(F(x) - G(x)) = s(x), \quad x \in Z.$$

Theorem. Let $\mathcal{G} \subset C(V, X)$ have the betweenness property. A necessary and sufficient condition that for every $f \in C(V, X)$ a best approximation is unique is that \mathcal{G} have zero-sign compatibility with null space V.

The proof is the same as the proof of the corresponding result in [1].

The case where \mathcal{G} is a finite-dimensional linear family is of particular interest. It can be shown using the above theorem that a necessary and sufficient condition for uniqueness is that \mathcal{G} be a Haar subspace on $X \sim V$. Independent proofs of necessity and sufficiency are given in [3], [2], respectively.

References

Department of Computer Science, University of Western Ontario, London, Ontario, Canada