Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS
   
Mobile Device Pairing
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)

The halting problem relativized to complements


Author: Louise Hay
Journal: Proc. Amer. Math. Soc. 41 (1973), 583-587
MSC: Primary 02F30; Secondary 02F25
MathSciNet review: 0327495
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ {H^A} = \{ e\vert{\text{domain}}\{ e\} \cap A \ne \emptyset \} $. It is shown that there exists a set $ A$ of Turing degree $ a$ such that $ {H^A}$ is Turing-incomparable to $ {H^{\bar A}}$ whenever $ a$ is an r.e. degree with $ a' > 0'$, or $ a \geqq 0''$ or $ a \geqq 0'$ and $ a$ is r.e. in 0'. This contrasts with the fact that $ {H^A}$ is comparable to $ {H^{\bar A}}$ for almost all $ A$.


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 02F30, 02F25

Retrieve articles in all journals with MSC: 02F30, 02F25


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9939-1973-0327495-X
PII: S 0002-9939(1973)0327495-X
Article copyright: © Copyright 1973 American Mathematical Society