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Abstract. By arithmetizing Levi's constructive test for member-

ship in [v2] we have translated the questions of whether a given

power product is in [y2] to determining whether a certain product of

matrices is the zero matrix. This leads to number-theoretic prob-

lems, including the diophantine equations of the title 2n—l=xi.

Introduction. In the proof of the sufficiency of the low power theorem

[4] and [10], one needs information concerning the differential ideal [yv],

and Ritt suggests in his "Questions for Further Investigations" [10,

p. 177] a further examination of this ideal. Levi [4] obtained a constructive

test for determining whether any polynomial is in [yp], and we have

arithmetized his method. Restricting ourselves to [y2] for simplicity, we

show that the question of determining whether a power product belongs

to [y2] can be translated into determining whether a certain product of

matrices is the zero matrix which in turn can be translated into a number

theoretic problem. In fact we encounter a problem stated by Ramanujan

in 1913 [9], first solved by Nagell in 1948 [7], and solved several times

since then [1], [2], [11], [12]. It may be of some interest to note that this

problem, which arose in the study of error correcting codes [11], has now

appeared in an investigation in differential algebra.

Notation. Let F be a field of characteristic zero, y a differential indeter-

minant over F, and R=F{y}, the differential ring of polynomials in y

and its derivatives, with coefficients in F. Denoting differentiation by

subscripts, if P=yi1yit ' • * Jid, we say that P is of degree d and weight

h>=2¿Li ij- Levi showed [4] that if w<.d(d— 1) then P e [y2], the smallest

differential ideal in R containing y2, and for each w^d(d— 1) he gave

examples of P which are not in the ideal. With the above power product,

assuming ix^i2^- ■ '^id, we associate the sequence (alt • • • , af) where

a*=2?=i h~k(k— 1), called the weight sequence.
Levi's condition can be stated as follows: the product P is in [y2] if

some entry of its weight sequence is negative. The fact that this condition

is not necessary was shown in [5], which also characterized all products

which are in the ideal if their weight sequences contain no number larger

than 2. An indication of some of the difficulties of a similar result for
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power products, the elements of whose weight sequences are no larger

than 3, is given in [8]. We present a new technique which can be applied

to any weight sequence, but shall limit our discussion to those whose

entries are ^3.

Sequences and the reduction process. We will show how Levi's reduc-

tion process for [y2] can be stated in terms of sequences. (It is easy to

generalize this to [yp].) As described above, to every ordered monomial

corresponds a sequence (ax, ■ • •, an). Conversely, to every weight sequence,

(ax, ■ • • , a A corresponds to the ordered monomial j¿ yf ■ ■ ■ y¡ where

i¡=a¡—a¡_x+2(j— 1) if we allow the i} to be negative and define a0=0.

If 2+aj+i-r-ai_1-2a1=;0 for /=1, 2, • • • , n-1, then z'1=/2<- ■ •<<„. If

for some k, 2-Yak+x+ak_x—2ak=t<0, it is easy to see that the sequence

(ax, ■ ■ • , ak_x, ak+t, ak+x, • • ■ , an) corresponds to

y*¡y** ' ' ' ^'i-i^^+i^'t^'n-a ' ' ' y*-

By iterating this process, any sequence (ax, ■ • • , a A can be put in canonical

form, that is, so that in the corresponding ordered product, ix^i2^- "á''n-

We present a brief description of Levi's reduction process for [y2], and

the simplification introduced in [5]. The product Y<**y*y> • • • yi is

called an a-term if z1-|-2^i2-|-2^- • •^í„_i+2=i„, and the a-terms

are linearly independent over F, modulo [y2]. If W=Y- y¡yi+x, then by

solving for jy<+i in ( v2)2i+i we obtain

W = Y 2 7±ri C-^JW,   modulo [y2].
¿=o ¿Is i

Similarly,

)'=0 Li

In [5] it is shown we can suppress the numbers 2C2i+x ¡2Cii+1, and CfjC2i

(which are there called first multipliers) and we write the above,

W=MY2 (-lOWm-,,   and    Yy2 =M y'f (-2)yiy2i_i,
3=0 J=0

respectively. In [4] it is shown that after a finite number of steps any

monomial is congruent, modulo [y2], to a linear combination of oc-terms,

and an element of R is in [y2] if and only if, in its expression as a linear

combination of a-terms, all coefficients are zero. Since all of the congru-

ences in this paper will be "multiplier" congruences, we drop the M and

write =, rather than =M
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Turning to sequences, we note that (ax, • • • , an), in canonical form,

is ana-term if and only if/(y)=aJ+1+ai_1—2ai^0fory'=l, 2, • • • , n—1.

Assume f(k)= — l. Then, corresponding to the above, we have

(<*!, ■ ■ •, a„) = - 2 («i. " " . a*-i. ak - h ak+x, • • • , a„),

where, in general, the sequences on the right side of the congruence will

not be in canonical form. It is easy to see that if the canonical form of

(flj, • • • , ak_i, ak—r, a^, • • • , an) has a negative entry, and hence is in the

ideal, the same is true for ally>r, and the sum can be terminated with

any such r. If f(k)= — 2 (which corresponds to ik=ik+x), then we have

"t

(flu '■■,"„)= -2 2 (ax, ■ ■ •, ak_i, ak - j, ak+1, •• •, an).
j=i

This completes the description of the reduction process, for if (ax, • • • ,an)

is in canonical form, then/(A:)^—2 for k=l, 2, • ■ ■ , n—\.

We finally note some results from [5, pp. 428-430], which will prove

useful. If (A) and (AA are sequences, and (A)= 2 «-¡(AA for some rational

numbers a,, then (0, A)=^ a¿(0, AA. Also, (1, 1, A)= — (0, 1, A); for

e=0, 1, if (A, <0 = a(O, • • ■ , 0, e) then (A, e, B)=<x(0, ■ • • , 0, e, B); and

if (ax, ■ ■ ■ , an, e) = a(0, • • • , 0, e) and (e, an, ■ ■ ■ , ax, 0)=^(0, • • • , 0)

then ß=0 if and only if <x=0. It is clear that no confusion will arise if we

delete a sequence of 0's at the beginning of a sequence ; thus we write

(1,2, 2, 2)=—2(1, 2) +(1, 2, 2) rather than the more precise

-2(0,0, 1,2)+ (0,1,2,2).

The following relation will be useful :

(0, 2, 2, 2) = -2(1, 2, 2) - 2(0, 2, 2)

s 2(1,1, 2) + 2(1, 0, 2) + 4(1, 2) + 4(0, 2)

a -2(1, 2) - 4(0, 2) + 4(1, 2) + 4(0, 2)

or

(*) (0,2, 2, 2) = 2(1, 2).

Matrices. As will be seen shortly, the sequence defined by g(0)=0,

g(l) = l, g(n+2)=g(n + l)—2g(n) will be important for our work. It is

easy to prove that g(n)=0 if and only if «=0, and we note that \g(n)\ = l
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if n=l, 2, 3, 5, 13. We first describe the procedure for sequences

(ax, ■ ■ ■ , an) with a^2.

The following relations, (1,2, 2)=0(1, 2)+(l, 2, 2), and (1,2, 2, 2)=
—2(1, 2) + (l, 2, 2) can be summarized by the matrix congruence

(1,2,2) \ / (1,2) \ /    0       1
I = M2 I    where M2 =

(1,2,2,2)/ \(1,2,2)1 \-2        1

Therefore, with 2¡=2,

(1, 2X, - • - , 2n+1)\ ^^ / (1,2) \

(1, 2X, ■ ■ ■ , 2n+2)l 2\(1, 2, 2)1

Mn   _ l(-\y-l2g(n - 1)      (-1)*-^«)

" I      (-l)"2g(«) (-l)"g(« + 1)
Similarly,

(L 2, 1) \

1(1 2 2 1)) - ™ 1)}\(1, A l, l)/

where P2i=(o)- Thus,

A = (l,2x,---, 2n+x, 1) = (1, 0)A/2"P21(0, 1) = 4(-l)-^(« - 1)(0, 1)

and since (0, 1) is an a-term, A is in [y2] if and only if g(n—1)=0, i.e.,

«=1. Thus (1, 2, 2, 1) is in [y2], and using (*), we find (0, 2, 2, 2,2, 1) is

also in [y2]. Using a remark at the end of the previous section and (*), we

conclude (1, 2,2, 2, 2, 0) and (2, 2, 2, 2, 2, 2, 0) are also in the ideal. In

this way we easily obtain the main results of §4 in [5].

We turn now to weight sequences (ax,--- , a„) where a¡^3. As before,

it is easy to show that

(1,2,3)

M31 (1,2, 2, 3) |    where M3 =

(L3)

and that

'(-iy o

0        -g(« + 3)       4g(n)

0 -2g(«)      8g(« - 3)/
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Similarly, we obtain the "transition" matrices,

(1,2,3,2) \

(1,2,2, 3, 2)    =■ tJ     '     J where T32 =

(1,3,2)    /

(1,2,3,1) \

(1, 2, 2, 3, 1) I = r81((0, 1)) where T31 =

(1,3,1)    /

(1,2,0) \

(1, 2, 2, 0)1
■ 7io((0, 0)) where T2

and

where T23 =
1    0   0

0    1    0

The following illustrates how the problem of membership in the ideal

for sequences (ax, ■ • ■ , an) with a^3 can be stated in terms of the above

matrices. Note P=(I, 3X, • • • , 3r+1, 2) with 3¿ = 3 is in [y2] if and only if

(0,0, l)M¡T32=(0,4(g(r)+2g(r-3))) is the zero matrix. Since g(r)+

2g(r—3)=—g(r—2), it follows that (1, 3j, 32, • • • , 3r+1, 2) is in the ideal

if and only if r=2. Also, using r20=2(2), we see that (1, 31; • • •, 3r+1,2,0) e

[y2] only if (1, 3^ • • • , 3r+1, 2) e [/]. Similarly, (1, 0, 0)M3T3i is the zero

matrix for every n, and (1, 0, 0)M3 is never the zero matrix (since M3

is nonsingular). That is, (1, 2, 3^ • • • , 3n+1, 1) is in the ideal for every

ti^O, and (1, 2, 3l5 • • • , 3k) is never in the ideal. The conclusions in this

paragraph contain the main results in [8].

We can now characterize all sequences (<%,••■ , an) in the ideal where

l<at^3 for l<i<n, which do not start with (2, 3, • • •) or (2, 2, 3, • • •)

or end with (■ • • , 3, 2, 0) or (• • • , 3, 2, 2, 0).

Theorem 1.    With 2,=2, 3¿ = 3, «¿ and m^O, and /= [y2],

(1) (1,31; ■• • , 3„+1, 2) el ifand only if'«=2.
(1, 21; • • • , 2„1+1, 3l5 • • • , 3mi+1, • • ■ , 3j, • • • , 3mt+x, I) el if and only

if either mk=2 or ni=0for every i.

(2) (1, 31; • • • , 3„1+1, 2X, • • •, 2mi+1, 31( ■ ■ ■, 3„2+1, » • •, 3i, • • •, 3Kk+x, 1) £

/ if and only if one ofnx and nk is 2.

(3) (I, 2j,        , 2„1+1, 3j,        , 3,„1+1, 2j,        , 2„2+1, • • • , 3lf        , 3mt+1,

2i> " " ' 2«i+i+i> !) e 7 '/am/ 0/I^ »/ 2*¿í «i= 1 •

(4) (l,3i,--- ,3n+1, l)eIifandonlyifn = 5.
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(5) (2X, • ■ ■ , 2„i+3, 3X, • • • , 3mi+i, • " • , 3X, • • • , 3OTi+1, 2X, • • • , 2„k+x, 1) e

IifandonlyifZk±\ni = l.

(«) (2i,- - -, 2„1+3, 3j, • • •, 3mi+1, • ■ •, 3i, ■ • •, 3m¡¡+x, 2X, • • •, 2„k+3,0) eI

if and only if 2?±î «t=l.
(7) In any of the above, replace (ax, ■ • ■ , an) by (a„, a„_x, • • • , ax).

Proof. Havingjust seen a proof of the first part of (1), we establish (3)

before completing the proof of (1). With nx, n2, • ■ • , mx, m2, ■ ■ • two

sequences of nonnegative integers, let

K, ßk) = (1, 0)(fl M2"'T23M3m!T32)Ai^.

Then we find the following recursion relations for k^.2:

2~\ = (-lr-^-^a^gK - 1)

+ (-iy*2ßk_xg(nk)(g(mk_x + 3) + 2g(m,_1)),

2-X = (-l)mi-'+n'"Vig(»,)

+ (-l)n*A_ig("* + l)(g(mk-i + 3) + 2g(mk_x)).

The determinant of this system of equations, with tx.k_x and ßk_x the un-

known, is

/2g(nt - 1)      2g(nk)   \
(-ir^-\g(mk_i + 3) + 2g(mM))det *

N     g(nk)        g(nk + 1)/

and this is not zero since g(mk_x + 3)-Y2g(mk)= —g(mk_x+l) and

/2g(», - 1)      2g(nk)   \ = /0    -2\«*

\     g{nk)        g(nk + 1)1 " \l        1/  '

We see olx and ßx cannot both be zero, hence, by induction the same is

true for a.k and ßk. If (<x.k, ßk)T2x = (0) then at=0. But, if a4=0 then either

nk=\ and ßk-X=f> or nk=0 and aA._1=0. Also, if ^=0 then ßk-X=0 and

nk=0. The conclusion (3) now follows readily. Since (u.k, ßk)T23Mr3T3X =

4ßAg(r+3)+g(r))=4ßk(g(r-2)), we see (1, 2X, ■ ■ ■ , 2„1+1, 31; • • • ,

3m +i, " ' " , 3t, • • • , 3m)t+1, 1) e/if and only if either ßk=0 or r=2. From

this, one can easily complete the proof of (1).

To obtain the result in (2), with mx, m2, • ■ ■ and nx, «2, • ■ • sequences

of nonnegative integers, we let («fc, ßk, 0) = (0, 0, 1) nLi (M^'T32M^T23).

Then

«. = (-l)"*^ - 2)g(n1),       ft = (-DMgiBi! - 2)g(«x + 1),
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and for fcStl,

■M = ^-ir<(-l)m^g(nk - IK + g(nk)g(mk + \)ßk),

/Vi = 2(-lY*((-\T^g(nk)*k + g(nk + l)g(mk + l)ßk).

By induction one can prove that if ßx^0, then for all k>\, aklßk=2ajbk

where ak and bk are odd; i.e., if ßi^O, then ß^O for all i. (It is clear that

if jg1=0 then a¿=pV=0 for all f.) Now,

¡AK, &, 0)M^r31 = ((-lfo, ßk(-g(t + 3)), ß4g(t))\ -4

= 4/S,(g(í + 3) + g(t)) = 4ßk(4g(t - 2))

and this is the zero matrix only if ßk=0 or t=2. This completes the proof

of (2). (From (1), (2) states that a sequence of this type is in the ideal only

if it has a factor in the ideal.)

To obtain (4), we note (0, 0, l)M2T3X=(1s(g(n)+g(n-3))) = (Sg(n-5))

which is zero only if n = 5. From equation (*) and the remarks at the end

of the previous section, the results (5), (6), and (7) follow.

The equation of Ramanujan-Nagell. Ramanujan [9] conjectured that

the diophantine equation x2 + l=2n+2 had only 5 solutions corresponding

to n= 1, 2, 3, 5, 13. This conjecture was first proved correct by Nagell [7].

An equivalent problem, which Mersenne numbers are triangular numbers,

i.e., solve 2m— l=k(k+l)¡2, was solved by Browkin and Schinzel [1].

Another equivalent problem, for what value of n is g(n)=±l if g(l) =

g(2)=l andg(n+2)=g(n+l)—2g(n), was solved by Chowla, Dunton and

Lewis [2], and by Skolem, Chowla and Lewis [12]. In the proof of the

following theorem, we encounter the same problem.

Theorem2.    With2i=2, and3(=3, (2, 3X, • • • , 3„+1, 2U • • • , 2r+1, 1) e

I if and only if:
r=2, n=0, or

r=3, n=l, 2, 4, 12, or

r=5, n = 3, 7, or

r=l3,n=ll.

Proof. If (2, 3^ ■ • ■ , 3„+1, 2X, ■ • ■ , 2r+1, 1) £ / then since 2(0, 2)=

(1,2, 2)-(1,2) we should have (-1, l)T23M3T32Mr2T2x=(0). But this

product equals (— l)r+18((— l)n-1g(r— l)+g(r)g(n+l))=0, and since

(g(r)>g(r—1))=1, we must haveg(r)=±l. In each of the references [2],

[3], [6], [7], [11], [12], it is shown that this only occurs if r= 1,2, 3,5, 13.

(g(3)=g(5)=s(13)=-l.)
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If r= 1, then g(«+l)=0 for which there is no nonnegative solution. If

r=2, theng(«+l)=(-l)nandn=l.Ifr=3,weseethat-g(n+l)=(-l)n

which implies «=1,2, 4, 12. If r=5, then (-l)"-1(-3)=g(n+l).Toshow

that «+1=4, 8 are the only solutions we will show that \g(k)\=3 only for

k—4, 8. Similarly, for r=13, we need (—l)n-145=g(n-|-l) and we show

that \g(k)\=45 only for k=\2.
The proof of the theorem will be complete once we have proved the

following lemma.

Lemma.   Ifg(\)=g(2)=\ andg(n+2)=g(n+l)—2g(n) then

(a) \g(n)\ = 3 if and only ifn=4, 8.
(b) |g(«)|=45 if and only ifn = \2.

Proof. From the conditions on g(n), it is well known that if m and n

are positive integers and m\n then g(m)\g(n). Also, it is easy to show that

■g(n + %)=g(n+4)-\6g(n) for all «.

The remainders of g(ri) modulo 64 are 1, 1, —1, —3, —1, followed by

a periodic pattern of 16 terms: 5, 7, —3, —17, —11, —23, —19, —1,

-27, -25, 29, 15, 21, -9, 13, 31. Therefore if g(n)=-3, then n=4, or
«=8 (16); i.e., n=4(4t+2). (We also note g(n) can never be +3.) For

f>0, g(4t+2)^±l and since 4t+2\n, g(4t+2)\g(n) or g(4i+2)=-3.
But 4r+2^8 (16) and this contradiction completes the proof of (a).

Before turning to (b) we show that \g(n)\=5 only if «=6. From the

remainders modulo 64, we see that if |g(«)|=5 then g(ri)=5 and «=6

(mod 16); i.e., «=2(8r+3). If />0, then g(8r-f-3)^±l, and hence

g(8r+3)=5. But 8/+3 jé6 (16) and \g(n)\ = 5 only if w=6.
The proof of (b) can be done in a similar manner. We first show that

|g(«)| never takes on the value 9 or 15. If \g(n)\=9 then g(n)=—9 and

« = 3 (mod 16). The remainders of g(4t+3) modulo 10 repeat in blocks of

6 and we find w=24,-r-3 = 3(8r+l). For i>0,g(8r+l)#±l, ±3; hence
g(St+l)—— 9 which implies 8/+1=3 (mod 16). This is a contradiction

and we conclude \g(n)\ is never 9. If |g(«)| = 15 then g(«)=15 and «=17

(mod 16). The remainders of g(4k+l) modulo 17 repeat in blocks of 36

(most easily seen as 4 groups of 9 each) and if g(n)=15 then «=21 or 141

(mod 144). This contradicts the above and we see \g(n)\ never takes on

the value 15.
From the remainders modulo 64 we find |g(«)|=45 only if g(n)=45

and «=16í+12=4(4í+3). For i>l, \g(4t+3)|ftt, 3, 5, 9, 15. Hence
g(4<+3)=45 which is impossible since 4/+3 is odd; therefore we have

shown |g(«)|=45 only if «=12.
Although other results similar to those in Theorem 2 can easily be

obtained, we have not been successful in characterizing all sequences
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1973] THE EQUATION  OF  RAMANUJAN-NAGELL  AND   [y1] 341

(ax, • • • , an) e I with a^3, no less all sequences in /. Indeed, the appear-

ance of the equation of Ramanujan-Nagell suggests that the search for

a necessary and sufficient test for membership in [y2], stated in terms of

the sequences (au • ■ ■ , an), may involve difficult, and possibly deep,

number theoretic problems.

However, it may be of some interest to note that the same problem (the

equation of Ramanujan-Nagell), which has attracted a fair amount of

theoretical attention over the years, also arose in the study of error

correcting codes, and has now reappeared in a problem in differential

algebra. One wonders whether there is perhaps something fundamental

about Ramanujan's problem, as well as when and where it may arise again.
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