Finitely generated steady semigroups
Author:
Takayuki Tamura
Journal:
Proc. Amer. Math. Soc. 41 (1973), 425430
MSC:
Primary 20M10; Secondary 06A50
MathSciNet review:
0327957
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: In this paper the author proves that is a finitely generated steady semigroup if and only if is isomorphic to the direct product of a finite abelian group and the infinite cyclic semigroup; and also studies the homomorphisms of a finitely generated steady semigroup into another.
 [1]
J. L. Chrislock, The structure of archimedean semigroups, Dissertation, University of California, Davis, Calif., 1966.
 [2]
J.
L. Chrislock, On medial semigroups, J. Algebra
12 (1969), 1–9. MR 0237685
(38 #5966)
 [3]
A.
H. Clifford and G.
B. Preston, The algebraic theory of semigroups. Vol. I,
Mathematical Surveys, No. 7, American Mathematical Society, Providence,
R.I., 1961. MR
0132791 (24 #A2627)
 [4]
R. P. Dickinson, Right zero unions, Dissertation, University of California, Davis, Calif., 1970.
 [5]
R. E. Hall, The structure of certain commutative separative and commutative cancellative semigroups, Dissertation, Pennsylvania State University, Middletown, Pa., 1969.
 [6]
John
C. Higgins, Representing 𝑁semigroups, Bull. Austral.
Math. Soc. 1 (1969), 115–125. MR 0248252
(40 #1504)
 [7]
John
C. Higgins, A faithful canonical representation for finitely
generated 𝑁semigroups, Czechoslovak Math. J. 19
(94) (1969), 375–379. MR 0248251
(40 #1503)
 [8]
D.
B. McAlister and L.
O’Carroll, Finitely generated commutative semigroups,
Glasgow Math. J. 11 (1970), 134–151. MR 0269765
(42 #4660)
 [9]
Mario
Petrich, Normal bands of commutative cancellative semigroups,
Duke Math. J. 40 (1973), 17–32. MR 0311819
(47 #381)
 [10]
Morio
Sasaki and Takayuki
Tamura, Positive rational semigroups and commutative power joined
cancellative semigroups without idempotent, Czechoslovak Math. J.
21(96) (1971), 567–576. MR 0292981
(45 #2062)
 [11]
Takayuki
Tamura, Commutative nonpotent archimedean semigroup with
cancelation law. I., J. Gakugei Tokushima Univ. 8
(1957), 5–11. MR 0096741
(20 #3224)
 [12]
John
C. Higgins and Takayuki
Tamura, Finitely generated 𝔑semigroup and quotient
group, Proc. Japan Acad. 49 (1973), 323–327. MR 0338223
(49 #2989)
 [1]
 J. L. Chrislock, The structure of archimedean semigroups, Dissertation, University of California, Davis, Calif., 1966.
 [2]
 , On medial semigroups, J. Algebra 12 (1969), 19. MR 38 #5966. MR 0237685 (38:5966)
 [3]
 A. H. Clifford and G. B. Preston, The algebraic theory of semigroups, Vol. I, Math. Surveys, no. 7, Amer. Math. Soc., Providence, R.I., 1961. MR 24 #A2627. MR 0132791 (24:A2627)
 [4]
 R. P. Dickinson, Right zero unions, Dissertation, University of California, Davis, Calif., 1970.
 [5]
 R. E. Hall, The structure of certain commutative separative and commutative cancellative semigroups, Dissertation, Pennsylvania State University, Middletown, Pa., 1969.
 [6]
 J. C. Higgins, Representing semigroups, Bull. Austral. Math. Soc. 1 (1969), 115125. MR 40 #1504. MR 0248252 (40:1504)
 [7]
 , A faithful canonical representation for finitely generated semigroups, Czechoslovak Math. J. 19 (1969), 375379. MR 40 #1503. MR 0248251 (40:1503)
 [8]
 D. B. McAlister and L. O'Carroll, Finitely generated commutative semigroups, Glasgow Math. J. 11 (1970), 134151. MR 42 #4660. MR 0269765 (42:4660)
 [9]
 M. Petrich, Normal bands of commutative cancellative semigroups, Duke Math. J. 40 (1973), 1732. MR 0311819 (47:381)
 [10]
 M. Sasaki and T. Tamura, Positive rational semigroups and commutative power joined cancellative semigroups without idempotent, Czechoslovak Math. J. 21 (1971), 567576. MR 45 #2062. MR 0292981 (45:2062)
 [11]
 T. Tamura, Commutative nonpotent archimedean semigroups with cancellation law. I, J. Gakugei Tokushima Univ. 8 (1957), 511. MR 20 #3224. MR 0096741 (20:3224)
 [12]
 J. C. Higgins and T. Tamura, Finitely generated semigroups and quotient groups, Proc. Japan Acad. 49 (1973), 323327. MR 0338223 (49:2989)
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC:
20M10,
06A50
Retrieve articles in all journals
with MSC:
20M10,
06A50
Additional Information
DOI:
http://dx.doi.org/10.1090/S00029939197303279575
PII:
S 00029939(1973)03279575
Keywords:
(Finitely generated) semigroups,
power joined semigroups,
steady semigroups,
structure groups,
prime elements to
Article copyright:
© Copyright 1973
American Mathematical Society
