Finitely generated steady -semigroups

Author:
Takayuki Tamura

Journal:
Proc. Amer. Math. Soc. **41** (1973), 425-430

MSC:
Primary 20M10; Secondary 06A50

MathSciNet review:
0327957

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper the author proves that is a finitely generated steady -semigroup if and only if is isomorphic to the direct product of a finite abelian group and the infinite cyclic semigroup; and also studies the homomorphisms of a finitely generated steady -semigroup into another.

**[1]**J. L. Chrislock,*The structure of archimedean semigroups*, Dissertation, University of California, Davis, Calif., 1966.**[2]**J. L. Chrislock,*On medial semigroups*, J. Algebra**12**(1969), 1–9. MR**0237685****[3]**A. H. Clifford and G. B. Preston,*The algebraic theory of semigroups. Vol. I*, Mathematical Surveys, No. 7, American Mathematical Society, Providence, R.I., 1961. MR**0132791****[4]**R. P. Dickinson,*Right zero unions*, Dissertation, University of California, Davis, Calif., 1970.**[5]**R. E. Hall,*The structure of certain commutative separative and commutative cancellative semigroups*, Dissertation, Pennsylvania State University, Middletown, Pa., 1969.**[6]**John C. Higgins,*Representing 𝑁-semigroups*, Bull. Austral. Math. Soc.**1**(1969), 115–125. MR**0248252****[7]**John C. Higgins,*A faithful canonical representation for finitely generated 𝑁-semigroups*, Czechoslovak Math. J.**19 (94)**(1969), 375–379. MR**0248251****[8]**D. B. McAlister and L. O’Carroll,*Finitely generated commutative semigroups*, Glasgow Math. J.**11**(1970), 134–151. MR**0269765****[9]**Mario Petrich,*Normal bands of commutative cancellative semigroups*, Duke Math. J.**40**(1973), 17–32. MR**0311819****[10]**Morio Sasaki and Takayuki Tamura,*Positive rational semigroups and commutative power joined cancellative semigroups without idempotent*, Czechoslovak Math. J.**21(96)**(1971), 567–576. MR**0292981****[11]**Takayuki Tamura,*Commutative nonpotent archimedean semigroup with cancelation law. I.*, J. Gakugei Tokushima Univ.**8**(1957), 5–11. MR**0096741****[12]**John C. Higgins and Takayuki Tamura,*Finitely generated 𝔑-semigroup and quotient group*, Proc. Japan Acad.**49**(1973), 323–327. MR**0338223**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
20M10,
06A50

Retrieve articles in all journals with MSC: 20M10, 06A50

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1973-0327957-5

Keywords:
(Finitely generated) -semigroups,
power joined -semigroups,
steady -semigroups,
structure groups,
prime elements to

Article copyright:
© Copyright 1973
American Mathematical Society