Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Finitely generated steady $ \mathfrak{N}$-semigroups

Author: Takayuki Tamura
Journal: Proc. Amer. Math. Soc. 41 (1973), 425-430
MSC: Primary 20M10; Secondary 06A50
MathSciNet review: 0327957
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper the author proves that $ S$ is a finitely generated steady $ \mathfrak{N}$-semigroup if and only if $ S$ is isomorphic to the direct product of a finite abelian group and the infinite cyclic semigroup; and also studies the homomorphisms of a finitely generated steady $ \mathfrak{N}$-semigroup into another.

References [Enhancements On Off] (What's this?)

  • [1] J. L. Chrislock, The structure of archimedean semigroups, Dissertation, University of California, Davis, Calif., 1966.
  • [2] J. L. Chrislock, On medial semigroups, J. Algebra 12 (1969), 1–9. MR 0237685
  • [3] A. H. Clifford and G. B. Preston, The algebraic theory of semigroups. Vol. I, Mathematical Surveys, No. 7, American Mathematical Society, Providence, R.I., 1961. MR 0132791
  • [4] R. P. Dickinson, Right zero unions, Dissertation, University of California, Davis, Calif., 1970.
  • [5] R. E. Hall, The structure of certain commutative separative and commutative cancellative semigroups, Dissertation, Pennsylvania State University, Middletown, Pa., 1969.
  • [6] John C. Higgins, Representing 𝑁-semigroups, Bull. Austral. Math. Soc. 1 (1969), 115–125. MR 0248252
  • [7] John C. Higgins, A faithful canonical representation for finitely generated 𝑁-semigroups, Czechoslovak Math. J. 19 (94) (1969), 375–379. MR 0248251
  • [8] D. B. McAlister and L. O’Carroll, Finitely generated commutative semigroups, Glasgow Math. J. 11 (1970), 134–151. MR 0269765
  • [9] Mario Petrich, Normal bands of commutative cancellative semigroups, Duke Math. J. 40 (1973), 17–32. MR 0311819
  • [10] Morio Sasaki and Takayuki Tamura, Positive rational semigroups and commutative power joined cancellative semigroups without idempotent, Czechoslovak Math. J. 21(96) (1971), 567–576. MR 0292981
  • [11] Takayuki Tamura, Commutative nonpotent archimedean semigroup with cancelation law. I., J. Gakugei Tokushima Univ. 8 (1957), 5–11. MR 0096741
  • [12] John C. Higgins and Takayuki Tamura, Finitely generated 𝔑-semigroup and quotient group, Proc. Japan Acad. 49 (1973), 323–327. MR 0338223

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 20M10, 06A50

Retrieve articles in all journals with MSC: 20M10, 06A50

Additional Information

Keywords: (Finitely generated) $ \mathfrak{N}$-semigroups, power joined $ \mathfrak{N}$-semigroups, steady $ \mathfrak{N}$-semigroups, structure groups, prime elements to $ a$
Article copyright: © Copyright 1973 American Mathematical Society