Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Finitely generated steady $ \mathfrak{N}$-semigroups


Author: Takayuki Tamura
Journal: Proc. Amer. Math. Soc. 41 (1973), 425-430
MSC: Primary 20M10; Secondary 06A50
DOI: https://doi.org/10.1090/S0002-9939-1973-0327957-5
MathSciNet review: 0327957
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper the author proves that $ S$ is a finitely generated steady $ \mathfrak{N}$-semigroup if and only if $ S$ is isomorphic to the direct product of a finite abelian group and the infinite cyclic semigroup; and also studies the homomorphisms of a finitely generated steady $ \mathfrak{N}$-semigroup into another.


References [Enhancements On Off] (What's this?)

  • [1] J. L. Chrislock, The structure of archimedean semigroups, Dissertation, University of California, Davis, Calif., 1966.
  • [2] -, On medial semigroups, J. Algebra 12 (1969), 1-9. MR 38 #5966. MR 0237685 (38:5966)
  • [3] A. H. Clifford and G. B. Preston, The algebraic theory of semigroups, Vol. I, Math. Surveys, no. 7, Amer. Math. Soc., Providence, R.I., 1961. MR 24 #A2627. MR 0132791 (24:A2627)
  • [4] R. P. Dickinson, Right zero unions, Dissertation, University of California, Davis, Calif., 1970.
  • [5] R. E. Hall, The structure of certain commutative separative and commutative cancellative semigroups, Dissertation, Pennsylvania State University, Middletown, Pa., 1969.
  • [6] J. C. Higgins, Representing $ N$-semigroups, Bull. Austral. Math. Soc. 1 (1969), 115-125. MR 40 #1504. MR 0248252 (40:1504)
  • [7] -, A faithful canonical representation for finitely generated $ N$-semigroups, Czechoslovak Math. J. 19 (1969), 375-379. MR 40 #1503. MR 0248251 (40:1503)
  • [8] D. B. McAlister and L. O'Carroll, Finitely generated commutative semigroups, Glasgow Math. J. 11 (1970), 134-151. MR 42 #4660. MR 0269765 (42:4660)
  • [9] M. Petrich, Normal bands of commutative cancellative semigroups, Duke Math. J. 40 (1973), 17-32. MR 0311819 (47:381)
  • [10] M. Sasaki and T. Tamura, Positive rational semigroups and commutative power joined cancellative semigroups without idempotent, Czechoslovak Math. J. 21 (1971), 567-576. MR 45 #2062. MR 0292981 (45:2062)
  • [11] T. Tamura, Commutative nonpotent archimedean semigroups with cancellation law. I, J. Gakugei Tokushima Univ. 8 (1957), 5-11. MR 20 #3224. MR 0096741 (20:3224)
  • [12] J. C. Higgins and T. Tamura, Finitely generated $ \mathfrak{N}$-semigroups and quotient groups, Proc. Japan Acad. 49 (1973), 323-327. MR 0338223 (49:2989)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 20M10, 06A50

Retrieve articles in all journals with MSC: 20M10, 06A50


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1973-0327957-5
Keywords: (Finitely generated) $ \mathfrak{N}$-semigroups, power joined $ \mathfrak{N}$-semigroups, steady $ \mathfrak{N}$-semigroups, structure groups, prime elements to $ a$
Article copyright: © Copyright 1973 American Mathematical Society

American Mathematical Society