A NOTE ON STRASSEN'S VERSION OF THE LAW OF THE ITERATED LOGARITHM

A. K. BASU

Abstract. Strassen's law of the iterated logarithm is extended to stationary ergodic martingales and to a non-identically-distributed case.

1. Introduction. V. Strassen [6] proved that if \(\{x_n\} \) are i.i.d.r.v.'s with \(E x = 0, E x^2 = 1 \), then for a continuous map \(\phi \) from \(C[0, 1] \) to \(\mathbb{R}^1 \), the sequence \(\phi(\eta_n) \) is relatively compact and the set of its limit points coincides with \(\phi(K) \) where \(\eta_n \) is obtained by linearly interpolating \((2n \log \log n)^{-1/2}S_i\) at \(t = i/n \), \(i = 1, 2, \ldots, n \), and \(S_i = x_1 + \cdots + x_i \).

\(K \) is the set of absolutely continuous functions \(f \in C[0, 1] \) such that \(f(0) = 0 \) and \(\int_1^1 |f'(t)|^2 \, dt \leq 1 \).

The key idea of the paper is that Strassen's theorem holds for any random sequence for which there is a Skorohod embedding in Brownian motion with stopping times \(\tau_n \) satisfying the strong law of large numbers. Two examples are given: one is the stationary ergodic martingales and the other a non-identically-distributed case.

As an easy extension of the corollary of Strassen [6], we can obtain in particular if \(\{x_i, F_i, i \geq 1\} \) is a stationary ergodic stochastic sequence \(E(x_i|F_{i-1}) = 0 \) a.s. for all \(i \geq 1 \) and \(E x_i^2 = 1 \), then

\[
(1) \quad \limsup \frac{S_n}{(2n \log \log n)^{-1/2}} = 1 \text{ a.s.}
\]

and

\[
(2) \quad \limsup \frac{\frac{1}{n} \sum_{i=1}^{n} S_i}{(\frac{3}{2} n \log \log n)^{1/2}} = 1 \text{ a.s.}
\]
(1) is recently obtained by W. F. Stout [7] by a different method and
(2) is an extension of the iterated logarithm for “Cesàro sums” considered
by Gal and Stackelberg [5], and Gaposhkin [2].

2. Results.

Lemmal 1. If \(\{\tau_i\} \), the sequence of stopping times of the Skorohod
representation theorem, satisfies the strong law of large numbers namely
\[
(\tau_1 + \cdots + \tau_n)/n \to 1 \text{ a.s.,}
\]
then there is a probability space with a Brownian motion \(B(t) \) and a sequence
\(\{S^n\}_1^\infty \) having the same distribution as \(\{S^n\}_1^\infty \) such that
\[
(3) \quad \sup_{r \leq t} \frac{|S^n - B(r)|}{(2t \log \log t)^{1/2}} \to 0 \quad \text{a.s. as } t \to \infty.
\]

Proof. Follows from [6].

Theorem 1. Strassen’s theorem [6] holds for a stationary ergodic mar-
tingale difference sequence \(\{x_n, F_n, n \geq 1\} \) with \(E(x_1^2) = 1 \).

To facilitate the proof of Theorems 1 and 2 let us state some known
results from Jonas’s thesis [3] and often we shall sketch a proof.

A generalization of Skorohod’s theorem. Let \((\mathcal{A}) \) \(\hat{X}_1, \hat{X}_2, \cdots \) be
a sequence of random variables on a probability space \((\Omega, \mathcal{B}, P) \) for which
\(E(\hat{X}_n^2|\hat{X}_1, \cdots, \hat{X}_n) \) exists for all \(n \) and \(E(\hat{X}_n|\hat{X}_1, \cdots, \hat{X}_n) = 0 \) a.s.

Let \((\Omega, \mathcal{B}, P) \) be a probability space with the following properties:
(1) There exists a Brownian motion \(B = B(t, \omega) \) on \((\Omega, \mathcal{B}, P) \).
(2) There exist random variables independent of the Brownian motion
\(B, Y_1, Y_2, \cdots \) on \((\Omega, \mathcal{B}, P) \) which are pairwise independent and distrib-
uted uniformly over the interval \([0, 1]\).

Then there exists a sequence of nonnegative random variables \(\tau_1, \tau_2, \cdots \)
on \((\Omega, \mathcal{B}, P) \) and \((B) \) random variables \(X_1, X_2, \cdots \) on \((\Omega, \mathcal{B}, P) \), such
that r.v.’s of the sequence \((\mathcal{A}) \) and \((B) \) have the same distribution and
\(\sum^n X_i = B(\sum^n \tau_i) \) a.s.

Moreover, if \(\mathcal{A}_n = \mathcal{B}(X_1, X_2, \cdots, X_n, B(t), 0 \leq t \leq \sum^n \tau_i) \), i.e. the
\(\sigma \)-field generated by \(X_1, \cdots, X_n \) and \(B(t) (0 \leq t \leq \sum^n \tau_i) \), then the following
hold.
(1) \(\tau_n \) is \(\mathcal{A}_n \)-measurable.
(2) For each \(s > 0 \), \(B_n(s) = B(\sum^n \tau_i + s) - B(\sum^n \tau_i) \) is independent
of \(\mathcal{A}_n \).
(3) \(E(\tau_n|\mathcal{A}_{n-1}) \) exists and \(E(\tau_n|\mathcal{A}_{n-1}) = E(X_n^2|\mathcal{A}_{n-1}) \) a.s. = \(E(X_n^2|X_1, X_2, \cdots, X_{n-1}) \).
If \(k > 0 \) and if \(E(X_{n+1}^2 \mid X_1, \ldots, X_{n-1}) \) exists, then \(E(\tau_n^k \mid \mathcal{A}_{n-1}) \) exists too, and further

\[
E(\tau_n^k \mid \mathcal{A}_{n-1}) \leq L_k E(X_n^{2k} \mid \mathcal{A}_{n-1}) = L_k E(X_n^{2k} \mid X_1, \ldots, X_{n-1}) \quad \text{a.s.}
\]

where \(L_k \) is a constant depending only on \(k \).

Sketch of proof. Like Skorohod [4, pp. 163–164], let us state

Lemma 2. Suppose that \(B(t) \) is a Brownian motion process for \(t \geq 0 \) and \(B(0) = 0 \) and \(\tau_{n+1} \) is the smallest root of \((B_n(t)-a)(B_n(t)-b)=0\), where \(a < 0 < b \). Then for every \(\lambda > 0 \),

\[
E(\exp(-\lambda \tau_{n+1}) I_{[B_n(\tau_{n+1})=b]} \mid \mathcal{A}_n) = \frac{\sinh b(2\lambda)^{1/2}}{\sinh b - a(2\lambda)^{1/2}} \quad \text{a.s.}
\]

and

\[
E(\exp(-\lambda \tau_{n+1}) I_{[B_n(\tau_{n+1})=a]} \mid \mathcal{A}_n) = -\frac{\sinh a(2\lambda)^{1/2}}{\sinh(b - a)(2\lambda)^{1/2}} \quad \text{a.s.}
\]

We can prove the lemma and the theorem by induction i.e. we would assume that \(\tau_1, \tau_2, \ldots, \tau_n \) and \(X_1, X_2, \ldots, X_n \) are already constructed having the desired properties. We now consider the construction of \(\tau_{n+1} \).

Let \(f_a = \exp(-\lambda \tau_{n+1}) I_{[B_n(\tau_{n+1})=a]} \). By assumption \(B_n(t) \) is independent of \(\mathfrak{A}_n \) and, by definition, of \(\tau_{n+1} \). \(\mathfrak{B}(f_a) \subset \mathfrak{B}(B_n(t), t \geq 0) \); therefore \(\mathfrak{B}(f_a) \) is independent of \(\tau_n \). Like Skorohod [4, p. 166] let us state a

Corollary. If \(B_n(t), \tau_{n+1} \) is as above, then for \(\lambda > 0 \) the following hold:

1. \[
E(\exp(-\lambda \tau_{n+1}) \mid \mathcal{A}_n) = \frac{\sinh b(2\lambda)^{1/2} - \sinh a(2\lambda)^{1/2}}{\sinh(b - a)(2\lambda)^{1/2}} \quad \text{a.s.};
\]
2. \[
E(I_{[B_n(\tau_{n+1})=a]} \mid \mathcal{A}_n) = \frac{b}{b - a} \quad \text{and}
\]
3. \[
E(I_{[B_n(\tau_{n+1})=b]} \mid \mathcal{A}_n) = -\frac{a}{b - a};
\]
4. For each \(k > 0 \), there exists a constant \(C_k \) depending on \(k \) only such that

\[
E(\tau_n^k \mid \mathcal{A}_n) \leq C_k ab(b-a)^{2k-2}.
\]

Here also the \(\sigma \)-field generated by those r.v.'s whose conditional expectation will be constructed is contained in the \(\sigma \)-field \(\mathfrak{B}(B_n(t), t \geq 0) \) and hence independent of \(\mathcal{A}_n \).

Let \(F_n(x, u) \) be the conditional distribution function of \(\tilde{X}_{n+1} \) given \((X_1, X_2, \ldots, X_n)=x\). If the jumps (or discontinuities) of \(F \) are joined by vertical lines and the graph so obtained is reversed then we obtain a function \(f_n(x, t) \) on \(R^n \times [0, 1] \) to \(R \). For fixed \(x \) this \(f_n(x, t) \), except for at most countable points \(t \), is defined everywhere in \([0, 1]\). These points are precisely those \(t \)'s for which \(F_n(x, u)=t \). \(f_n(x, t) \) is the distribution
function mapping. Since \(E(\hat{X}_{n+1} | \hat{X}_1, \cdots, \hat{X}_n) = 0 \), like Skorohod, we get
\[
\int_{a_n(x)}^{b_n(x)} f_n(x, t) dt = -\int_{\hat{a}_n(x)}^{\hat{b}_n(x)} f_n(x, t) dt
\]
where
\[
\alpha_n(x) = F_n(x, 0) + \frac{1}{2} \left(\lim_{z \to 0^+} F_n(x, z) - \lim_{z \to 0^-} F_n(x, z) \right)
\]
and a function \(G_n : R^n \times [0, 1] \to [0, 1] \) defined by
\[
\int_{a_n(x)}^{b_n(x)} f_n(x, t) dt = -\int_{G_n(x, y)}^{G_n(x, z)} f_n(x, t) dt
\]
and a function \(G_n : R^n \times [0, 1] \to [0, 1] \) defined by
\[
\int_{a_n(x)}^{b_n(x)} f_n(x, t) dt = -\int_{G_n(x, y)}^{G_n(x, z)} f_n(x, t) dt
\]
and also \(G_n \) has the property
\[
G_n(x, G_n(x, y)) = x \quad \text{a.s.} \quad (y \in [0, 1]), \quad G_n(x, \alpha_n(x)) = \alpha_n(x) \quad \text{a.s.}
\]
Let \(Y_{n+1} \) be the \((n+1)\)th uniformly distributed random variable on \((\Omega, \mathcal{B}, P)\). Then we can define two mappings \(X_{n+1}^a \) and \(X_{n+1}^b \) from \(R^n \times [0, 1] \) to \(R \) by
\[
X_{n+1}^a(x, \omega) = f_n(x, Y_{n+1}(\omega)), \quad X_{n+1}^b(x, \omega) = f_n(x, G_n(x, Y_{n+1}(\omega))).
\]
and \(X_{n+1}^a \) and \(X_{n+1}^b \) are \(\mathcal{B} \times \mathcal{B}(Y_{n+1}) \) measurable random variables where \(\mathcal{B} \) is the usual Borel field on \(R^n \) and \(\mathcal{B}(Y_{n+1}) \) is the Borel field defined by \(Y_{n+1} \). Like Skorohod [4, p. 167] we state the lemma.

Lemma 3. Let \(B_n(t) \) be independent of \(\mathcal{A}_n \) and \(Y_{n+1} \). Let \(T(x, \eta) \), \(x \in R^n, \eta \in [0, 1] \) be the smallest solution of
\[
(B_n(t, \eta) - X_{n+1}^a(x, \eta))(B_n(t, \eta) - X_{n+1}^b(x, \eta)) = 0.
\]
Further let \(T_{n+1}(\omega) = T(X_1(\omega), \cdots, X_n(\omega), \omega) \) and \(X_{n+1} = B_n(T_{n+1}) \), then \(T_{n+1} \) is \(\mathcal{A}_n \) measurable and \(X_1, X_2, \cdots, X_{n+1} \) and \(\hat{X}_1, \hat{X}_2, \cdots, \hat{X}_{n+1} \) have the same distribution.

Let \(F_\eta \) be the \(\sigma \)-field generated by \(X_1, X_2, \cdots, X_\eta \) and \(F_0 = \mathcal{A}_0 = \{ \phi, \Omega \} \).

Proof of Theorem 1. Now by the Birkhoff ergodic theorem
\[
n^{-1}[E(\tau_n | \mathcal{A}_{n-1}) + E(\tau_{n-1} | \mathcal{A}_{n-2}) + \cdots + E(\tau_2 | \mathcal{A}_1) + E(\tau_1 | \mathcal{A}_0)]
\]
\[
\quad \rightarrow \frac{1}{n} \sum_{i=1}^{n} E(X_i^2 | F_{i-1}) \rightarrow EX_1^2 = 1 \quad \text{a.s.};
\]
now it is enough to show that
\[
\frac{1}{n} \sum_{i=1}^{n} [\tau_i - E(\tau_i | \mathcal{A}_{i-1})] \rightarrow 0 \quad \text{a.s.};
\]
using Theorem 5 of Chow [1], the result will follow if

\[\sum_{n=1}^{\infty} \frac{1}{n^2} E(\tau_n - E(\tau_n \mid \mathcal{F}_{n-1}))^2 < \infty. \]

Now

\[\sum_{n=1}^{\infty} \frac{1}{n^2} E(\tau_n - E(\tau_n \mid \mathcal{F}_{n-1}))^2 \leq \sum_{n=1}^{\infty} \frac{1}{n^2} E\tau_n^2 \leq L_2 \sum_{n=1}^{\infty} \frac{1}{n^2} E\mathcal{X}_n^4. \]

Since \((X_n, i \geq 1)\) is a stationary ergodic sequence with \(E(X_i \mid F_{i-1}) = 0\) a.s. for all \(i \geq 2\), proceeding as in Skorohod [4] we see that \((\tau_i, i \geq 1)\) are stationary. Since \((Y_n, n \geq 1)\) are independent identically distributed uniform random variables on \([0, 1]\) and \((X_n, n \geq 1)\) are stationary ergodic stochastic sequences, \(\{X_n^a\}\) and \(\{X_n^b\}\) are also stationary ergodic stochastic sequences.

Now by a truncated argument, e.g., considering \(X^*_n = X_n I_{\{|X_n| < \varepsilon \sqrt{n}\}}\), (6) is true. Therefore \(n^{-1}(\tau_1 + \tau_2 + \cdots + \tau_n) \rightarrow 1\) a.s. So by Lemma 1,

\[\sup_{t \geq 1} \frac{|S_{lr} - B_{lr}|}{(2t \log \log t)^{1/2}} \rightarrow 0 \quad \text{a.s. as } t \rightarrow \infty. \]

So the theorem follows from the Corollary to Theorem 3 of [6].

Theorem 2. Strassen's theorem [6] holds if \(x_1, x_2, \cdots\) are independent r.v.'s with \(E x_i = 0, E x_i^2 = 1\) and

\[\sum_{k=2}^{\infty} E \left| x_k \right|^{2+\delta} < \infty, \quad 2 \geq \delta > 0 \]

(in particular if \(E \left| x_k \right|^{2+\delta} \leq C\) for all \(k\)).

Proof. Now

\[E \left| \tau_k^{-1} \right|^{1+\delta/2} \leq 2^\delta (E \tau_k^{1+\delta/2} + 1) \leq 2^\delta (C_\delta E \left| x_k \right|^{2+\delta} + 1). \]

So by Theorem 5 of Chow [1]

\[\sum_{k=2}^{\infty} E \left| x_k \right|^{2+\delta} < \infty \quad \text{implies} \quad \frac{1}{n} \sum_{i=1}^{n} (\tau_i - E\tau_i) \rightarrow 0 \quad \text{a.s.} \]

Therefore \(\{\tau_i\}\) satisfies the conditions of Lemma 1.

Remarks 1. Gaposhkin [2] proved that if \(x_1, x_2, \cdots\) are independent r.v.'s with \(|x_k| \leq C\) a.s. and \(E x_k^2 = 1, E x_k = 0\) for all \(k = 1, 2, \cdots\) then

\[\limsup \frac{1}{\log n} \sum_{k=1}^{n} \left(1 - \frac{k}{n}\right)^{x_k} \left(\frac{2}{n \log \log n}\right)^{-1/2} = 1 \quad \text{a.s., } \alpha > 0. \]

We shall extend this result under the conditions of Theorems 1 and 2.
Let $S_0=0$. By Abel's sum

$$
\sum_{k=1}^{n} \left(1 - \frac{k}{n}\right)^{x_k} = \sum_{k=0}^{n-1} \left(1 - \frac{k}{n}\right)^{x_k} - \left(1 - \frac{k+1}{n}\right)^{x_k} S_k
$$

Taking $f(t)=a(1-t)^{a-1}$ on p. 218 of Strassen [6] we get

$$
\limsup_{n \to \infty} 2^{1/2} \left(2^{n^3 \log \log n} \right)^{1/2} \sum_{k=1}^{n} f\left(\frac{k}{n}\right) S_k = \left(\frac{1}{2\alpha + 1}\right)^{1/2}.
$$

Similarly Theorem 2 and Theorem 3 of Gaposhkin [2] may be extended.

2. We conjecture that if x_1, x_2, \cdots is a martingale difference sequence with $E_{x_1}=0$, $E_{x_2^n}=1$ for all n and $\{x_{n_1}\}_{n=1}^{\infty}$ is uniformly integrable, then the law of the iterated logarithm holds.

ACKNOWLEDGEMENT. Appreciation is extended to the National Research Council of Canada for financial support of this work.

Thanks to the referee for some helpful suggestions.

REFERENCES