FIELDS OF CONSTANTS OF INFINITE HIGHER DERIVATIONS

JAMES K. DEVENEY

Abstract. Let K be a field of characteristic \(p \neq 0 \), and let \(P \) be its maximal perfect subfield. Let \(h \) be a subfield of \(K \) containing \(P \) such that \(K \) is separable over \(h \). We prove: Every regular subfield of \(K \) containing \(h \) is the field of constants of a set of higher derivations on \(K \) if and only if (1) the transcendence degree of \(K \) over \(h \) is finite, and (2) \(K \) has a separating transcendency basis over \(h \). This result leads to a generalization of the Galois theory developed in [4].

I. Introduction. Let \(K \) be a field of characteristic \(p \neq 0 \), and let \(P \) be its maximal perfect subfield. If \(h \) is the field of constants of a set of higher derivations on \(K \), then \(h \) is a regular subfield of \(K \) containing \(P \). This paper is concerned with determining when every regular subfield of \(K \) containing \(h \) (and hence \(P \)) is the field of constants of a set of higher derivations on \(K \). Necessary and sufficient conditions are shown to be (1) the transcendence degree of \(K \) over \(h \) is finite, and (2) \(K \) has a separating transcendency basis over \(h \). This is Corollary (4.2). This result leads to an immediate extension of the Galois theory developed in [4]. In part, we can restate the main result of [4] as follows: Assume \(K \) has a finite separating transcendency basis over a subfield \(h \) containing \(P \). Then there exists a one-to-one correspondence between regular subfields of \(K \) containing \(h \) and Galois subgroups of \(H^\infty(K) \). (The characterization of Galois subgroups remains the same.) Moreover, (4.2) shows this to be the most general condition on \(K \) relative to \(h \) under which all regular subfields of \(K \) containing \(h \) will be fields of constants of groups of higher derivations on \(K \).

II. Definitions and preliminary results. Throughout this paper, \(K \) will be a field of characteristic \(p \neq 0 \). A higher derivation on \(K \) is a sequence \(d = \{d_i | 0 \leq i < \infty \} \) of additive maps of \(K \) into \(K \) such that

\[
d_r(ab) = \sum \{d_i(a)d_j(b) \mid i + j = r \}
\]

and \(d_0 \) is the identity map. The set \(H^\infty(K) \) of all higher derivations on \(K \)
is a group with respect to the composition $d \circ e = f$ where

$$f_i = \sum \{d_m e_n \mid m + n = i\}$$

[1, Theorem 1, p. 33]. Note that the first nonzero map (of subscript > 0) is a derivation. The field of constants of a subset $G \subseteq H^\alpha(K)$ is \{$a \in K \mid d_i(a) = 0, i > 0, (d_i) \in G$\}. $H^\alpha(K)$ will denote the group of all higher derivations on K whose field of constants contains the subfield h.

(2.1) [2, Theorem 1]. Let B be a p-basis for K and let $f: A \times B \to K$ be an arbitrary function. There is a unique $(d_i) \in H^\alpha(K)$ such that for each $b \in B$ and $i \in \mathbb{Z}$, $d_i(b) = f(i, b)$.

(2.2) [3, p. 436]. Let $(d_i) \in H^\alpha(K)$ and $a \in K$. Then $d_{ip}(a^p) = (d_i(a))^p$ and if p and j are relatively prime, $d_{ij}(a^p) = 0$.

A field K is a regular extension of a subfield h if K/h is separable and h is algebraically closed in K.

(2.3) [4, Theorem 2.3]. Let h be the field of constants of a set of higher derivations on K. Then K is a regular extension of h.

(2.4) Lemma. The field of constants of $H^\alpha(K)$ is P, the maximal perfect subfield of K.

Proof. Let $a \in K \setminus P$. If \{a, αa^{-1}, $\alpha^2 a^{-1}$, \cdots\} $\subseteq K$, then $P(a, \alpha a^{-1}, \alpha^2 a^{-1}, \cdots)$ would also be perfect, contrary to the assumption that P is maximal. Thus there exists $n \geq 0$ such that $\alpha^p a^{-n} \in K \setminus P$. Let \{ap\}$^\square \cup T$ be a p-basis for K, and define $d = \{d_i\}$ by $d_1(\alpha^p a^{-n}) = 1, d_i(t) = 0 \forall t \in T, d_i(x) = 0, x \in \{\alpha^p a^{-n}\} \cup T, 1 < i < \infty$. Then

$$d_{ip}(a) = d_{ip}((\alpha^p a^{-n})^p) = (d_i(\alpha^p a^{-n}))^p = 1$$

by (2.2). Thus the field of constants of $H^\alpha(K)$ is contained in P. Applying (2.2) shows P is contained in the field of constants of $H^\alpha(K)$, and the lemma is established.

III. Higher derivations and separating transcendency bases. As before, K is a field of characteristic $p \neq 0$ with maximal perfect subfield P. Throughout this section we assume the transcendence degree of K/P (tr d(K/P)) is finite.

(3.1) Theorem. Let $K \supseteq h \supseteq P$ be fields and assume K has a separating transcendency basis over h and h is algebraically closed in K. Then h is the field of constants of a set of higher derivations on K.

Proof. Let \{x_1, \cdots, x_n\} be a separating transcendency basis, and hence a relative p-basis [5, Theorem 15, p. 384], for K/h, and let T be a p-basis for h. Since K/h is separable, \{x_1, \cdots, x_n\}$\cup T$ is a p-basis for K. Define $\mathcal{F} = \{d^1, \cdots, d^n\}$ by

$$d_i^1(x_i) = 1, \quad d_i^1(x) = 0, \quad x \in \{x_1, \cdots, x_1, \cdots, x_n\} \cup T, 1 \leq i \leq n,$$
and
\[d_i^j(x) = 0, \quad x \in \{x_1, \cdots, x_n\} \cup T, \quad 1 \leq i \leq n, \quad 1 < j < \infty. \]

Since \(d_i^j(t) = 0 \) \(\forall t \in T, \quad 1 \leq i \leq n, \quad 1 \leq j < \infty, \) \(h \) is contained in the field of constants of \(\mathcal{F} \). By [4, Theorem 3.2], the transcendence degree of \(K \) over the field of constants of \(\mathcal{F} \) is \(n \), and hence \(h \) is the field of constants of \(\mathcal{F} \).

(3.2) Example. The condition of Theorem (3.1) is not necessary. Consider the following example [5, Example 10, p. 389]. Let \(P \) be a perfect field and \(Z = \{z_1, z_2, \cdots\} \) a denumerable set of elements algebraically independent over \(P \). Let \(P(Z^{\infty}) \) be the perfect field
\[P(Z^{\infty}) = P(Z, Z^{-1}, Z^{-2}, \cdots). \]

Let \(y, u_0 \) be algebraically independent over \(P(Z^{\infty}) \), and define quantities \(u_n \) recursively by
\[u_n = y^{p^n-1} + Z_n u_{n-1} \quad (n = 1, 2, \cdots). \]

Let \(K = P(Z^{\infty}, y, u_0, u_1^{p^{-1}}, u_2^{p^{-2}}, \cdots, u_n^{p^{-n}}, \cdots) \).

Mac Lane has shown \(P(Z^{\infty}) \) is the maximal perfect subfield of \(K \), \(K \) has \(\{y, u_0\} \) as a transcendency basis over \(P(Z^{\infty}) \), and \(\{y\} \) is a \(p \)-basis for \(K \). Thus \(K \) does not have a separating transcendency basis over \(P(Z^{\infty}) \), but by (2.4), \(P(Z^{\infty}) \) is the field of constants of \(H^{\infty}(K) \).

This example also shows that not every regular subfield \(h \) of \(K \) containing \(P \) is the field of constants of a set of higher derivations. Let \(h \) be the algebraic closure of \(P(Z^{\infty}, y) \) in \(K \). Since \(\{y\} \) is \(p \)-independent in \(K \), \(K/h \) is separable and hence regular. Since \(\text{tr} \text{d}(K/P(Z^{\infty})) = 2 \), \(h \neq K \). Since \(\{y\} \) is a \(p \)-basis for \(K \), the null set \(\emptyset \) is a relative \(p \)-basis for \(K/h \) and hence by (2.1) \(H^{\infty}_K(K) = \{0\} \) and \(h \) is not the field of constants of any set of higher derivations on \(K \).

Let \(h \) be a subfield of \(k \) containing \(P \) such that \(K \) is separable over \(h \) and assume \(\text{tr} \text{d}(K/h) < \infty \).

(3.3) Theorem. Every regular subfield \(k \) of \(K \) containing \(h \) is the field of constants of a set of higher derivations on \(K \) if and only if \(K \) has a separating transcendency basis over \(h \).

Proof. If \(K \) has a separating transcendency basis over \(h \), then \(K \) has one over any regular subfield \(k \) containing \(h \) [5, Theorem 18, p. 387], and hence every regular subfield \(k \) containing \(h \) is the field of constants of a set of higher derivations (3.1). Conversely, assume \(K \) does not have a separating transcendency basis over \(h \). Let \(T \) be any relative \(p \)-basis for \(K \) over \(h \). Since \(T \) is algebraically independent over \(h \), in view of [5, Theorem 13, p. 383], \(T \) cannot be a transcendency basis for \(K \) over \(h \).
Thus if we let \(k \) be the algebraic closure of \(h(T) \) in \(K \), \(k \not= K \), \(k \) is a regular subfield of \(K \) (since \(K/k \) preserves \(p \)-independence) and as in (3.2) \(H_k^\infty(K) = \{0\} \). Thus the theorem follows.

(3.4) Corollary. The following are equivalent.

(1) There exists a transcendency basis \(T \) for \(K \) over \(h \) such that \(K^{p^n} \) is a separable extension of \(h(T) \).

(2) Every regular subfield of \(K \) containing \(h \) is the field of constants of a set of higher derivations on \(K \).

(3) \(K \) has a separating transcendency basis over \(h \).

Proof. The equivalence of (1) and (3) is [5, Theorem 6, p. 375]. (3.3) shows (2) equivalent to (3).

IV. Transcendence degree of \(K/h = \infty \).

(4.1) Theorem. Let \(K \) be a field of characteristic \(p \neq 0 \). Let \(h \) be a subfield of \(K \) containing \(P \) such that \(K/p^n \) is a separable extension of \(h(T) \) and assume the transcendence degree of \(K \) over \(h \) is infinite. Then there exists a regular subfield \(k \) of \(K \) containing \(h \) which is not the field of constants of any set of \(p \)-bases on \(K \).

Proof. Let \(T \) be any relative \(p \)-basis for \(K \) over \(h \). If \(|T| < \infty \), let \(k \) be the algebraic closure of \(h(T) \) in \(K \). Then \(K \) is regular over \(k \) (\(K/k \) preserves \(p \)-independence) and since \(\varnothing \) is a relative \(p \)-basis for \(K \) over \(k \), \(H_k^\infty(K) = \{0\} \) and \(k \) is the desired subfield. If \(|T| = \infty \), let \(T = \{x_1, x_2, \ldots\} \cup S \). Let \(k_1 \) be the algebraic closure of \(h(s) \) in \(K \). Then \(\{x_1, x_2, \ldots\} \) is a relative \(p \)-basis for \(K \) over \(k_1 \). Elementary calculations show \(\{x_1 x_2^p, x_2 x_3^p, \ldots, x_n x_{n+1}^p, \ldots\} \) is also a relative \(p \)-basis. Since \(K/k_1 \) is separable, \(\{x_1 x_2^p, x_2 x_3^p, \ldots\} \) is algebraically independent over \(k_1 \). We claim \(\{x_1, x_1 x_2^p, x_2 x_3^p, \ldots\} \) is also algebraically independent over \(k_1 \). If not, \(\{x, x_1 x_2^p, \ldots, x_{n-1} x_n^p\} \) must be algebraically dependent over \(k_1 \) for some \(n \). But \(k_1(x_1, x_2, \ldots, x_n) \) is algebraic over \(k_1(x_1, x_1 x_2^p, \ldots, x_{n-1} x_n^p) \) and hence

\[
\text{tr} \, \text{d}(k_1(x_1, \ldots, x_n)/k_1) < n,
\]

a contradiction. Thus \(\{x_1, x_1 x_2^p, \ldots\} \) is algebraically independent over \(k_1 \).

Let \(k \) be the algebraic closure of \(k_1(x_1 x_2^p, x_2 x_3^p, \ldots) \) in \(K \). Then \(k \) is a regular subfield of \(K \), \(k \neq K \), and \(\varnothing \) is a relative \(p \)-basis for \(K \) over \(k \). Thus \(H_k^\infty(K) = \{0\} \) and \(k \) is not the field of constants of any set of higher derivations on \(K \).

(4.2) Corollary. Let \(K \) be a field of characteristic \(p \neq 0 \). Let \(h \) be a subfield of \(K \) containing \(P \) such that \(K \) is separable over \(h \). Then every regular subfield of \(K \) containing \(h \) is the field of constants of a set of higher derivations on \(K \).
derivations on K if and only if (1) the transcendence degree of K over h is finite and (2) K has a separating transcendency basis over h.

The Galois theory established in [4] required that K be finitely generated over the distinguished regular subfields. In view of (4.2) we see that the correspondence can be extended to regular subfields h such that K has a finite separating transcendency basis over h. In part, the Galois correspondence can now be stated as follows.

(4.3) **Theorem.** Assume K has a finite separating transcendency basis over a regular subfield h containing P. Then there exists a one-to-one correspondence between the regular subfields of K containing h and Galois subgroups of $H_h^\infty(K)$.

The characterization of the Galois subgroups remains the same as in [4]. Moreover, (4.2) shows the condition that K have a finite separating transcendency basis over h to be the most general we can impose and maintain a complete correspondence in that all regular subfields of K containing h will be fields of constants of sets of higher derivations.

References

Department of Mathematics, Florida State University, Tallahassee, Florida 32306