THE STRICT TOPOLOGY FOR P-SPACES

ROBERT F. WHEELER

Abstract. A P-space is a completely regular Hausdorff space X in which every $G_δ$ is open. It is shown that the generalized strict topologies $β$ and $β_0$ coincide on $C^*(X)$, and that strong measure-theoretic properties hold; in particular, $(C^*(X), β)$ is always a strong Mackey space. As an application, an example is constructed of a non-quasi-complete locally convex space in which closed totally bounded sets are compact.

1. Introduction. All topological spaces considered here are assumed to be completely regular Hausdorff. If X is such a space, then $C^*(X)$ denotes the space of bounded real-valued continuous functions on X. The strict topology $β$ on $C^*(X)$ was introduced by Buck [6] for locally compact X; combining his ideas with the measure-theoretic concepts of Varadarajan [18], Sentilles [17] considered locally convex topologies $β_0$, $β$, and $β_1$ on $C^*(X)$, X completely regular, which yield the spaces $M_t(X)$, $M_r(X)$, and $M_σ(X)$ of tight, $τ$-additive, and $σ$-additive Baire measures as duals. A useful reference for the notions of uniform $σ$- and $τ$-additivity is [10]. We assume the results of these papers as needed.

The principal source of information about P-spaces is the Gillman-Jerison text [11]. Nondiscrete P-spaces are remote from the locally compact spaces studied in measure theory; indeed every compact subset of such a space is finite. Nevertheless, it is shown here that certain aspects of the strict topology in the locally compact case remain valid for P-spaces. For example, the topologies $β$ and $β_0$ coincide, and $(C^*(X), β)$ is always a strong Mackey space. The latter result can be obtained using either the well-known techniques of Conway [8] for paracompact locally compact spaces or via the more recent ideas of uniform $σ$- and $τ$-additivity, giving an opportunity to compare and contrast these methods. Every discrete space is a P-space, and some results of this paper can be viewed as extensions of the work of Collins [7] in the discrete case. On the other
hand, the existence of a P-space which admits no complete uniform structure \([11, 9L]\) permits the construction of counterexamples to two recent conjectures in functional analysis and topological measure theory.

The following properties of P-spaces will be needed: every zero-set of a real-valued continuous function is open (indeed the Baire sets of a P-space are precisely the clopen subsets). If \((f_n)\) is a uniformly bounded sequence of functions in \(C^*(X)\), then \(f(x) = \sup f_n(x)\), and \(g(x) = \inf f_n(x)\) are also members of \(C^*(X)\). The latter property resembles (but is stronger than) the requirement that \(C^*(X)\) with the usual ordering be a conditionally \(\sigma\)-complete lattice.

2. Properties of \(\beta\) and \(\beta_0\) for P-spaces. For any space \(X\), let \(X_d\) denote the underlying set of \(X\), endowed with the discrete topology. Then \(C^*(X)\) can be considered as a subspace of \(C^*(X_d)\).

Theorem 2.1. If \(X\) is a P-space, then (a) \((C^*(X), \beta_0)\) is topologically isomorphic under the inclusion map to a subspace of \((C^*(X_d), \beta_0)\), and the latter space is its completion; (b) \((C^*(X), \beta_0)\) is sequentially complete; (c) \(M_t(X) = M_t(X_d) = \mathbb{P}(X)\).

Proof. Since every compact subset of \(X\) is finite, the associated \(k\)-space of \(X\) is \(X_d\); now (a) follows from Theorem 6 of \([10]\). The result of (b) is an easy consequence of the fact that, in a P-space, the pointwise limit of any uniformly bounded sequence of continuous functions is again continuous. The final result was proved by Babiker \([2]\).

Now we use the Conway-LeCam technique to show that \(\beta\) and \(\beta_0\) are identical in our setting.

Theorem 2.2. If \(X\) is a P-space, then \((C^*(X), \beta_0)\) is a strong Mackey space, and \(\beta = \beta_0\).

Proof. Since \(\beta\) and \(\beta_0\) yield the same dual space (2.1(c)), and always \(\beta_0 \leq \beta\), the first result implies the second. Let \(A\) be a subset of \(M_t(X)\) such that every sequence in \(A\) has a weak*-cluster point (in \(M_t(X)\)). If \(A\) is not uniformly tight, then we can find \(\varepsilon_0 > 0\), pairwise disjoint compact (equivalently, finite) subsets \((D_n)\) of \(X\) and members \((\mu_n)\) of \(A\) with

\[
|\mu_n| \left(X \setminus \bigcup_{i=1}^{n-1} D_i \right) > \varepsilon_0
\]

and

\[
|\mu_n| \left(X \setminus \bigcup_{i=1}^n D_i \right) < \varepsilon_0/4 \forall n.
\]

Since every \(G_\delta\) in \(X\) is open, every pairwise disjoint sequence of closed sets in \(X\) is discrete. Applying this to the sequence of compact sets \((D_n)\), we can easily obtain a sequence \((F_n)\) of pairwise disjoint closed sets with each
D_n contained in the interior of F_n. Then (F_n) is also a discrete sequence of sets. Let $D_n = \{x_{i_n} : 1 \leq i \leq i_n\}$, and for each n, choose $f_n \in C^*(X)$ with $f_n(x_{i_n}) = \text{sgn} \mu_n((x_{i_n}), f_n|X\setminus F_n \equiv 0$, and $\|f_n\| \leq 1$. Then the map $T : l^\infty \to C^*(X)$ defined by $T(\alpha) = \sum_{n=1}^{\infty} \alpha_n f_n$ is $\beta_0 - \beta_0$ continuous. Thus the adjoint T^* maps $M_1(X)$ into l^1, and T^*A is relatively $\sigma(l^1, l^\infty)$-countably compact, hence relatively norm compact. Hence there is a positive integer n_0 such that $|T^*(\mu_n(e_n))| < \varepsilon_0 / 2 \forall n \geq n_0$, where e_n is the nth unit vector. However, it is easily verified that $|T^*(\mu_n(f_n))| > \varepsilon_0 / 2$, and we have a contradiction.

We now give a characterization of P-spaces and discrete spaces X in terms of behavior of $B = \{f \in C^*(X) : \|f\| \leq 1\}$.

Theorem 2.3. Let X be completely regular Hausdorff. Then

(a) B is β- (or β_0-) compact if and only if X is discrete;
(b) B is β- (or β_0-) countably compact if and only if X is a P-space;
(c) B is β_0-totally bounded if and only if every compact subset of X is finite.

Proof. (a) If B is β_0-compact and $p \in X$, let (f_a) be a net in B which converges pointwise to the characteristic function of $\{p\}$. Then any β_0-cluster point of (f_a) necessarily coincides with this characteristic function, so $\{p\}$ is open and X is discrete. Conversely if X is discrete, then B is β-totally bounded [7, Theorem 4.1] and β-complete, hence β-compact.

(b) If B is β_0-countably compact, then, replacing $\{p\}$ and (f_a) in (a) by a zero-set Z and sequence (f_n), we find X to be a P-space (every zero-set is open). Conversely, if X is a P-space and (f_n) is a sequence in B, define an equivalence relation on X by $x \sim y$ iff $f_n(x) = f_n(y) \forall n$. Each equivalence class is a zero-set, hence open, so the quotient space Y is discrete. Let $\pi : X \to Y$ be the quotient map; there is a sequence (g_n) in the unit ball of $C^*(Y)$ with $g_n \circ \pi = f_n \forall n$. From (a), (g_n) has a β_0-cluster point g_0, and $g_0 \circ \pi$ is a β_0-cluster point of (f_n). Since $\beta_0 = \beta$ for X a P-space, the result follows.

(c) Since β_0 and the compact-open topology agree on B, this result is immediate.

Now we have that X a P-space $\Rightarrow B$ is β-totally bounded \Rightarrow compact subsets of X are finite. However, neither implication can be reversed as we now show. Varadarajan [18, pp. 225–227] discusses two spaces which may be described as follows: Let N denote the set of positive integers, and let \mathcal{F} be the filter of subsets of N which have density one [11, 6U], with p a fixed cluster point of \mathcal{F} in βN. Let \mathcal{U} be the unique ultrafilter on N which refines \mathcal{F} and converges to p. Then $\mathcal{N} \cup \{p\}$ can be topologized by requiring each point of \mathcal{N} to be open and neighborhoods of p to be of the form $\{p\} \cup F$, where $F \in \mathcal{F}$ or $F \in \mathcal{U}$; call the resulting spaces V and E (E has the relative topology of βN). It can be shown
(using, for example, Theorem 2.13 of [15]) that $\beta=\beta_0$ on $C^*(E)$. Since compact subsets of E are finite, $B \subset C^*(E)$ is then β-totally bounded, but E is not a P-space.

On the other hand, compact subsets of V are finite, and β and β_0 yield the same dual space for $C^*(V)$ [15, Proposition 3.4], yet $B \subset C^*(V)$ is not β-totally bounded. If it were, then, by a duality result of Grothendieck [14, p. 266], each β-equicontinuous subset of $M_\tau(V)$ would be norm-totally bounded. For each $x \in V$, let $\delta(x)$ be the point mass at x; define $\mu_n=n^{-1}(\sum_{i=1}^{n} \delta(i))$, $\mu_0=\delta(p)$. Then (μ_n) is weak*-convergent to μ_0 in $M_\tau^+(V)$ [18, p. 226] and so $A=\{\mu_n: n \geq 0\}$ is β-equicontinuous [17, Theorem 5.2], but, as is easily seen, not norm-totally bounded.

3. Measure-theoretic properties of P-spaces. Any space X for which $M_\sigma(X)=M_\tau(X)$ is realcompact; Babiker [2], [3] has shown that the converse is true for P-spaces (with certain cardinality assumptions). By minor modifications of his arguments it can be shown that (in the terminology of [19]) a P-space satisfies $M_\tau=M_\sigma$ if and only if it is topologically complete (no cardinality assumptions needed). However, a topologically complete P-space need not be paracompact, or even normal [1].

The next result shows that P-spaces have the following curious property: any set of τ-additive measures which is well-behaved with respect to sequences (uniformly σ-additive) is necessarily well-behaved with respect to nets (uniformly τ-additive). This is true in spite of the fact that $M_\sigma(X) \neq M_\tau(X)$ for certain P-spaces X (§4). In the following, let ξ denote the family of uniformly bounded equicontinuous subsets of $C^*(X)$, and let $\mathcal{T}(\xi)$ denote the topology on $M_\tau(X)$ of uniform convergence on members of ξ. Since sequences in $C^*(X)$ which are either norm convergent to 0 or monotone decreasing and pointwise convergent to 0 are equicontinuous, it is easy to see that $(M_\sigma(X), \mathcal{T}(\xi))$ is a complete locally convex space.

Theorem 3.1. If X is a P-space, then the following conditions on a subset H of $M_\tau(X)$ are equivalent:

(a) uniformly τ-additive;
(b) relatively weak*-compact in $M_\tau(X)$;
(c) every sequence in H has a weak*-cluster point in $M_\tau(X)$;
(d) every sequence in H has a weak*-cluster point in $M_\sigma(X)$;
(e) uniformly σ-additive;
(f) norm-totally bounded;
(g) $\mathcal{T}(\xi)$-totally bounded.

Proof. The implications (a)\Rightarrow(b)\Rightarrow(c)\Rightarrow(d)\Leftarrow(e) and (f)\Rightarrow(g)\Rightarrow(d) are true for any X ((d)\Leftarrow(e) was shown by Varadarajan [18, p. 203], and...
(g)⇒(d) follows from \(T(\xi) \)-completeness of \(M_\sigma(X) \). For \(X \) a \(P \)-space, we show (e)⇒(a)⇒(f). If \(H \) is uniformly \(\sigma \)-additive, then so are \(H^+=\{\mu^+:\mu\in H\} \) and \(H^-\{\mu^-:\mu\in H\} \) [10, p. 120]; hence we may as well assume that \(H \) consists of nonnegative measures. If \(H \) is not uniformly \(\tau \)-additive, there is a net \((f_\alpha)\) in \(C^*(X) \) and \(\varepsilon_0>0 \) such that
\[
\sup\{\mu(f_\alpha):\mu\in H\} > \varepsilon_0 \forall \alpha.
\]
Using the \(\tau \)-additivity of each member of \(H \), we can find a sequence \(\alpha_1>\alpha_2>\cdots \) of indices and members (\(\mu_n \)) of \(H \) such that \(\mu_n(f_{\alpha_{n+1}})<\varepsilon_0/2^n \). Let \(f_0=\inf f_{\alpha_n} \). Then \(f_0 \in C^*(X) \) and \((f_{\alpha_n}-f_0)\downarrow 0 \), so \(\mu(f_{\alpha_n}-f_0)\to 0 \) uniformly with respect to \(\mu \in A \). This implies the existence of an integer \(n_0 \) such that \(\mu_{\alpha_n}(f_{\alpha_{n+1}})<\varepsilon_0/4 \) for \(n \geq n_0 \), a contradiction.

Since the uniformly \(\tau \)-additive sets are precisely the \(\beta \)-equicontinuous sets, (a)⇒(f) follows from 2.3 and the Grothendieck result mentioned in the previous section.

Note that the equivalence of (a) and (c) furnishes an alternate proof that \((C^*(X), \beta)\) is a strong Mackey space, independent of 2.2.

Corollary 3.2. If \(X \) is a \(P \)-space, then (a) the norm and weak* topologies agree on \(\beta \)-equicontinuous subsets of \(M_\sigma(X) \); (b) \(M_\sigma(X) \) is weak*-sequentially complete; in fact, every weak*-Cauchy sequence in \(M_\sigma(X) \) is norm-convergent.

Proof. Since \(M_\sigma(X) \) is a norm-closed subspace of \(M(X) \), the Banach dual of \(C^*(X) \), the first assertion follows from the equivalence of (a) and (f) in 3.1. It is known [18, p. 195] that \(M_\sigma(X) \) is weak*-sequentially complete. Thus a weak*-Cauchy sequence in \(M_\sigma(X) \) satisfies 3.1(d), so it is \(\beta \)-equicontinuous, and the result follows.

As an immediate consequence of 3.2(a), the finest topology on the dual of \((C^*(X), \beta)\) which agrees with the weak* topology on \(\beta \)-equicontinuous sets is the norm topology. The corresponding result for discrete \(X \) was proved by Collins [7, Theorem 4.1]. Note that any weak*-convergent sequence in \(M(X) \) is weakly convergent; since \(\beta X \) is an \(F \)-space when \(X \) is a \(P \)-space, this follows from a result of Seever [16].

4. A counterexample. An example of a non-realcompact \(P \)-space \(S \) is recorded in [11, 9L]. Applying Shirota's theorem [11, p. 229] and 2.2, we have: \((C^*(S), \beta)\) is a strong Mackey space, although \(S \) admits no complete uniform structure. This resolves negatively a conjecture advanced by the author in [19]. The conjecture, however, remains open for the category of \(k \)-spaces (in particular, for locally compact spaces).

The class of locally convex spaces in which closed totally bounded sets are compact has been examined in [4] and [9]. Answering a question
posed by Buchwalter [5], Haydon [13] has given an example of a non-
quasi-complete space with this property. The example offered here,
obtained independently by the author, is of a very different sort.

Example 4.1. \((M(S), \mathcal{T}(\xi))\) is a non-quasi-complete locally convex
space in which closed totally bounded sets are compact.

Note that \(M(S)\) is identical as a vector space to \(l^1(S_d)\), where \(S_d\) has
cardinal \(\aleph_2\). The fact that closed totally bounded sets are compact follows
readily from 3.1. On the other hand, there is a natural embedding \(j: S \to (M(S), \mathcal{T}(\xi))\). Arguing as in [19], it can be shown that \(j(S)\) is \(\mathcal{T}(\xi)\)-
closed and bounded in \(M(S)\), yet the \(\mathcal{T}(\xi)\)-closure of \(j(S)\) in \(M_d(S)\) is
(a copy of) the Hewitt real-compactification of \(S\), hence properly contains
\(j(S)\). Thus \(j(S)\) is not \(\mathcal{T}(\xi)\)-complete.

5. Possible extensions. The results obtained here for \(P\)-spaces are not
valid, in general, for other classes of highly disconnected spaces. For
example, assume the continuum hypothesis, and let \(p\) be a \(P\)-point of
\(\beta N\setminus N\) [11, 6V]. Then \(X = \beta N\setminus\{p\}\) is extremally disconnected and locally
compact. However, \((C^*(X), \beta)\) is not a Mackey space; the argument is
similar to that of Conway for the ordinals less than \(\omega_1\) [8, p. 481]. But
under the additional assumption that compact subsets of \(X\) are finite,
strong results for highly disconnected spaces have been obtained recently
by Haydon [12].

References

3. ———, Uniform continuity of measures on completely regular spaces, J. London
5. H. Buchwalter, Fonctions continues et mesures sur un espace complètement
6. R. C. Buck, Bounded continuous functions on a locally compact space, Michigan
7. H. S. Collins, On the space \(l^\infty(S)\), with the strict topology, Math. Z. 106 (1968),
361–373. MR 39 #763.
8. J. B. Conway, The strict topology and compactness in the space of measures. II,
9. J. Dazord and M. Jourlin, Sur les precompacts d’un espace localement convexe,
10. D. H. Fremlin, D. J. H. Garling, and R. G. Haydon, Bounded measures on
11. L. Gillman and M. Jerison, Rings of continuous functions, University Series in
12. R. Haydon, On compactness in spaces of measures and measurecompact spaces
(preprint).

Department of Mathematics, Northern Illinois University, DeKalb, Illinois 60115