Area of Bernstein-type polynomials

Martin E. Price

Abstract. Bernstein polynomials in one variable are known to be total-variation diminishing when compared to the approximated function \(f \). Here we consider the two variable case and give a counterexample to show they are not area-diminishing. Sufficient conditions are then given on a continuous function \(f \) to insure convergence in area. A similar theorem is proved for Kantorovitch polynomials in the case \(f \) is summable.

We consider the two-dimensional Bernstein polynomials \(B_{n,m}f \), and the corresponding Kantorovitch polynomials \(K_{n,m}f \), for functions \(z = f(x,y) \) defined on the unit square \(Q \). Sufficient conditions are given to insure the convergence in area of these polynomials. In particular if \(f \) is summable and generalized absolutely continuous on \(Q \), then \(L K_{n,m}f \to \Phi f \) where \(L \) is Lebesgue area, and \(\Phi \) is the Cesari-Goffman generalized area; if \(f \) is continuous and ACT, with \(R \)-integrable Tonelli lengths, then \(L B_{n,m}f \to Lf \).

For any \(f \) defined on all of \(Q \),

\[
B_{n,m}f(x,y) = \sum_{r=0}^{n} \sum_{s=0}^{m} f \left(\frac{r}{n}, \frac{s}{m} \right) p_{n,r}(x)p_{m,s}(y)
\]

where \(p_{n,R}(t) = \binom{n}{R} t^R (1-t)^{n-R} \).

For summable \(f \) on \(Q \),

\[
K_{n,m}f(x,y) = \sum_{r=0}^{n} \sum_{s=0}^{m} I_{r,s} p_{n,r}(x)p_{m,s}(y)
\]

where

\[
I_{r,s} = (n+1)(m+1) \int_{r/(n+1)}^{(r+1)/(n+1)} \int_{s/(m+1)}^{(s+1)/(m+1)} f(\xi, \eta) \, d\xi \, d\eta.
\]

If \(f \) is continuous, \(B_{n,m}f \) and \(K_{n,m}f \) converge uniformly to \(f \). Although the behavior of \(B_{n,m}f \) for discontinuous functions is quite erratic,
e.g. [L, p. 28], and [PJ], we have

Proposition 1. If \(f \) is summable on \(Q \), \(K_{n,m} f \) converges in the \(L_1 \) sense to \(f \).

Proof. For all \(m, n, \int_0^1 \int_0^1 K_{n,m} f = \int_0^1 \int_0^1 f \) because \(\int_0^1 p_N(t) \, dt = 1/(N+1) \) for any \(N \) and \(R = 0, 1, \ldots, N \). Hence \(\| K_{n,m} f \|_1 \leq \| f \|_1 \). Choose a continuous \(h \) such that \(\| f - h \|_1 \leq \epsilon/3 \). Then

\[
\| f - K_{n,m} f \|_1 \leq \| f - h \|_1 + \| h - K_{n,m} h \|_1 + \| K_{n,m} h - K_{n,m} f \|_1 \\
\leq 2 \| f - h \|_1 + \| h - K_{n,m} h \|_1.
\]

Since \(h \) is continuous, the last term is also at most \(\epsilon/3 \) for large \(m \) and \(n \), which completes the proof.

Cesari and later Goffman have defined equivalent areas for summable functions on \(Q \). We give Goffman’s version \([GJ]\). Let

\[
\Phi f = \inf \lim \inf_{(p_t)} L(p_t)
\]

where \(p_t \) are quasilinear functions converging \(L_1 \) to \(f \) and the inf is taken over all such sequences of \(p_t \). \(\Phi \) is lower semicontinuous with respect to \(L_1 \) convergence and coincides with \(L \) for continuous \(f \).

If \(f(x, y) \) is continuous, the linear variation for fixed \(y \) is denoted by \(V_{y,f}(y) \); similarly \(V_{x,f}(x) \). Their Lebesgue integrals, the Tonelli variations are \(V_y f = \int_0^1 V_{y,f}(y) \, dy \) and \(V_x f = \int_0^1 V_{x,f}(x) \, dx \). Correspondingly for summable \(f(x, y) \), the linear generalized variations are \(\varphi_{x,f}(y) \) and \(\varphi_{y,f}(x) \) where variation in each case is computed only over points of linear approximate continuity. The generalized Tonelli variations are \(\varphi_{x,f} = \int_0^1 \varphi_{x}(y) \, dy \) and \(\varphi_{y,f} = \int_0^1 \varphi_{y}(x) \, dx \). For continuous \(f \) and \(g \),

\[
L(f + g) \leq Lf + V_{y,g} + V_{x,g}
\]

and for summable \(f \) and \(g \),

\[
\Phi(f + g) \leq \Phi f + \varphi_{y,g} + \varphi_{x,g}.
\]

A continuous \(f(x, y) \) is ACT if \(V_{x,f} \) and \(V_{y,f} \) are finite and \(f \) is absolutely continuous on almost all lines parallel to each coordinate axis. A summable \(f \) is said to be \(g \)-ACT if \(\varphi_{x,f} \) and \(\varphi_{y,f} \) are finite, and there exists an \(h \sim g \) such that \(h \) is absolutely continuous on almost all lines parallel to each coordinate axis. Functions of \(g \)-ACT type may be “essentially discontinuous” i.e. every \(h \sim g \) is nowhere continuous \([G2]\).

For finite valued \(f(x) \) on \([0, 1]\),

\[
B_n f(x) \equiv \sum_{r=0}^{n} f \left(\frac{r}{n} \right) p_{n,r}(x)
\]
and for summable \(f \),

\[
K_n f(x) \equiv \sum_{r=0}^{n} (n + 1) \left(\int_{r/(n+1)}^{(r+1)/(n+1)} f(\xi) \, d\xi \right) p_{n,r}(x).
\]

Let \(V \) be total variation, \(\varphi \) be variation over points of approximate continuity, \(l \) the Jordan length, and \(\lambda \) the length over points of approximate continuity. Then for all \(n \),

\[
\begin{align*}
(a) \quad & VB_n f \leq Vf, \\
(b) \quad & VK_n f \leq \varphi f, \\
(c) \quad & lB_n f \leq lf, \\
(d) \quad & \lambda K_n f \leq \lambda f.
\end{align*}
\]

Part (a) is in \([L]\); (b) is in \([P_2]\); (c) and (d) follow from (a) and (b) by an integral-geometric formula of Cauchy and Steinhaus \([P_2]\). In virtue of the lower semicontinuity of \(V \) and \(l \) with respect to uniform convergence, and of \(\varphi \) and \(\lambda \) with respect to \(L_1 \) convergence, all four functionals converge as \(n \to \infty \). It is thus reasonable to conjecture \(LB_{n,m} f \to Lf \) and \(LK_{n,m} f \to \Phi f \) as \(n, m \to \infty \) for appropriate classes of functions.

There is a major difference in the two variable case however. Construct a \(C^\infty \) “rounded spike” function \(f_\varepsilon \) on \(Q \) which vanishes off a circular neighborhood \(C_\varepsilon \) of \((\varepsilon, \varepsilon)\) and assumes the value 1 at \((\varepsilon, \varepsilon)\). By making the spike sufficiently thin, \(Lf_\varepsilon = 1 + \varepsilon \) for arbitrarily small positive \(\varepsilon \). On the other hand \(B_{2\varepsilon} f_\varepsilon = 4\varepsilon^2 (1-x)(1-y) \) and is independent of the base radius \(r_\varepsilon \) of the spike. Hence, though \(f_\varepsilon \in C^\infty \), \(LB_{2\varepsilon} f_\varepsilon > 1 + \varepsilon = Lf_\varepsilon \) for some \(\varepsilon \) in contrast to the relations (2). We now state the theorems.

Theorem 1. \(f \) is \(gACT \), then \(\lim_{n,m \to \infty} LK_{n,m} f = \Phi f \).

Proof. \(\Phi \) is lower-semicontinuous with respect to \(L_1 \) convergence, so by Proposition 1, \(\liminf_{n,m \to \infty} LK_{n,m} f \geq \Phi f \).

By (1b),

\[
\Phi f \leq \liminf_{n,m} LK_{n,m} f \leq \limsup_{n,m} LK_{n,m} f = \limsup_{n,m} \Phi K_{n,m} f
\]

\[
\leq \Phi f + \limsup_{n,m} \varphi_\varepsilon(K_{n,m} f - f) + \limsup_{n,m} \varphi_\varepsilon(K_{n,m} f - f).
\]

It will be sufficient then to show (say) \(\varphi_\varepsilon(K_{n,m} f - f) \to 0 \). Since \(f \) is \(gACT \), \(\partial f/\partial x \) is summable, where \(\partial f/\partial x \) is the partial derivative with sets of measure zero neglected in the difference quotient \([G_1]\). Pick \(h \) continuously differentiable on \(Q \) such that \(\| \partial f/\partial x - H \|_1 < \varepsilon/3 \); i.e. \(\varphi_\varepsilon(f - H) < \varepsilon/3 \) where \(H(x, y) = \int_0^y h(t, y) \, dt \). Thus

\[
\varphi_\varepsilon(K_{n,m} f - f) \leq \varphi_\varepsilon(f - H) + V_\varepsilon(H - K_{n,m} H) + V_\varepsilon(K_{n,m} H - K_{n,m} f).
\]

The first term is \(< \varepsilon/3 \), and so is the second for large \(n \) and \(m \) because \(\partial K_{n,m} H/\partial x \to \partial H/\partial x \), since \(H \) is \(C^1 \). The proof of this follows from showing \(|\partial K_{n,m} /\partial x| - |\partial B_{n,m} /\partial x| \) to be small, and then using the corresponding result for \(B_{n,m} \) which is proved in \([B]\).
For the third term, we need a lemma which holds for any summable function.

Lemma. For $F(x, y)$ summable on Q and all m and n, $V_x K_{n,m} F \leq \varphi_x F$ (and $V_y K_{n,m} F \leq \varphi_y F$).

Proof.

\[
V_x K_{n,m} F = \int_0^1 \int_0^1 \frac{\partial K_{n,m} F}{\partial x} \, dx \, dy
\]

\[
= n \int_0^1 \int_0^1 \sum_{r=0}^{m} \sum_{s=0}^{n-1} |I_{r+1,s} - I_{r,s}| p_{n-1,r}(x)p_{m,s}(y) \, dx \, dy
\]

\[
\leq n \sum_{r=0}^{m} \sum_{s=0}^{m} \int_0^1 |I_{r+1,s} - I_{r,s}| p_{n-1,r}(x)p_{m,s}(y) \, dx \, dy
\]

\[
= \frac{1}{m+1} \sum_{r=0}^{n-1} \sum_{s=0}^{m} |I_{r+1,s} - I_{r,s}|.
\]

But

\[
|I_{r+1,s} - I_{r,s}| \leq (m+1) \int_{s/(m+1)}^{(s+1)/(m+1)} (n+1)
\]

\[
\cdot \int_{(r+2)/(n+1)}^{(r+1)/(n+1)} F(\xi, \eta) \, d\xi \, d\eta - \int_{r/(n+1)}^{(r+2)/(n+1)} F(\xi, \eta) \, d\xi \, d\eta
\]

and so

\[
V_x K_{n,m} F \leq \int_0^1 (n+1) \sum_{r=0}^{n-1} \int_{(r+2)/(n+1)}^{(r+1)/(n+1)} F(\xi, \eta) \, d\xi \, d\eta
\]

\[
- \int_{r/(n+1)}^{(r+2)/(n+1)} F(\xi, \eta) \, d\xi \, d\eta
\]

(3)

For almost all $\eta \in [0, 1]$, $F(\xi, \eta)$ is a summable function of ξ. For these η, the expression inside the first integral is at most $\varphi_x F(\eta)$. The proof is essentially that of (2)(b). Thus the right hand side of (3) is at most $\int_0^1 \varphi_x F(\eta) \, d\eta = \varphi_x F$ which completes the proof.

Now let $F = H - f$. F is summable, and so by the lemma

\[
V_x (K_{n,m} H - K_{n,m} f) = V_x (K_{n,m} (H - f)) \leq \varphi_x (H - f) < \varepsilon/3.
\]

Hence $\varphi_x (K_{n,m} f - f) < \varepsilon$ for large n and m which completes the proof of Theorem 1.

For the next theorem, set $l_x f = \int_0^1 l_x f(y) \, dy$ where $l_x f(y)$ is the Jordan length in the x-direction of a section at y. Similarly define $l_y f$.

Theorem 2. If f is ACT and $l_x f$ and $l_y f$ are R-integrable, then $\lim_{n,m \to \infty} LB_{n,m} f = L f$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Proof. Since \(B_{n,m}f \to f \) uniformly, \(\lim \inf_{n,m \to \infty} LB_{n,m}f \geq Lf \). By (1a), it is sufficient to show as in Theorem 1, that (say) \(V_x(B_{n,m}f - f) \to 0 \). Let \(h \) and \(H \) be as in Theorem 1 with \(V_x(f - H) < \epsilon/4 \). Then

\[
V_x(B_{n,m}f - f) \leq V_x(f - H) + V_x(H - B_{n,m}H) + V_x(B_{n,m}(H - f)).
\]

The first term is at most \(\epsilon/4 \), as is the second for large \(n \) and \(m \), because \((\partial B_{n,m}H/\partial x) \to (\partial H/\partial x) \) uniformly [B]. For the third term, it is necessary to show \(V_x(f - H) \) is \(R \)-integrable.

Since \(l_xf \) is \(R \)-integrable, \(l_xf(y) \) and hence \(V_xf(y) \) is bounded for \(y \in [0, 1] \). Since \(H \) is \(C^1 \), \(V_x(f - H)(y) \) is bounded. In addition, \(V_x(f - H)(y) \) is continuous almost everywhere. To see this, pick \(y_0 \) from the full measure set where simultaneously \(f(x, y_0) \) is absolutely continuous as a function of \(x \), and \(l_xf(y) \) is continuous as a function of \(y \). Consider a sequence \(y_n \to y_0 \), and correspondingly the \(l_xf(y_n) \) and \(l_xH(y_n) \). Since \(H \) is \(C^1 \), \(H(x, y_0) \) is an absolutely continuous function of \(x \). By theorems in [A-L], \(l_x(f - H)(y_n) \to l_x(f - H)(y_0) \) which implies \(V_x(f - H)(y_n) \to V_x(f - H)(y_0) \). Thus \(V_x(f - H)(y) \) is continuous at almost all \(y \) and is \(R \)-integrable.

For arbitrary \(F(x, y) \), a computation similar to the lemma shows

\[
V_xB_{n,m}F \leq \frac{1}{m + 1} \sum_{s=0}^{m} V_xF \left(\frac{s}{m} \right)
\]

for all \(n, m \). Thus

\[
V_xB_{n,m}(H - f) \leq \frac{1}{m + 1} \sum_{s=0}^{m} V_x(H - f) \left(\frac{s}{m} \right)
\]

which converges to \(V_x(H - f) \) by \(R \)-integrability of \(V_x(H - f)(y) \). Hence for large \(m \) and all \(n \), the right hand side of (4) is less than \(2(\epsilon/4) = \epsilon/2 \). For the same \(m \) and \(n \),

\[
V_x(B_{n,m}f - f) \leq \frac{\epsilon}{4} + \frac{\epsilon}{4} + \frac{\epsilon}{2} = \epsilon,
\]

and the same computation for \(y \) shows \(V_y(B_{n,m}f - f) \to 0 \). Therefore \(\lim \sup LB_{n,m}f \leq Lf \) which completes the proof.

References

Department of Mathematics, Wayne State University, Detroit, Michigan 48202

Current address: Department of Mathematics, Framingham State College, Framingham, Massachusetts 01701