Operators with powers essentially similar to those of their adjoints

Author:
S. M. Patel

Journal:
Proc. Amer. Math. Soc. **42** (1974), 243-247

MSC:
Primary 47A65

MathSciNet review:
0326453

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let *T* be an operator on a Hilbert space *H*. In the present note the following result is obtained:

If *T* is an operator such that for some integers , where 0 is not in the essential numerical range of *S*, and *K* is compact, then for any complex number in the essential spectrum of *T*, .

**[1]**S. K. Berberian,*Some conditions on an operator implying normality. II*, Proc. Amer. Math. Soc.**26**(1970), 277–281. MR**0265975**, 10.1090/S0002-9939-1970-0265975-3**[2]**S. K. Berberian,*The Weyl spectrum of an operator*, Indiana Univ. Math. J.**20**(1970/1971), 529–544. MR**0279623****[3]**S. K. Berberian,*An extension of Weyl’s theorem to a class of not necessarily normal operators*, Michigan Math. J.**16**(1969), 273–279. MR**0250094****[4]**P. A. Fillmore, J. G. Stampfli, and J. P. Williams,*On the essential numerical range, the essential spectrum, and a problem of Halmos*, Acta Sci. Math. (Szeged)**33**(1972), 179–192. MR**0322534****[5]**Vasile Istrățescu and Ioana Istrățescu,*On some classes of operators. II*, Math. Ann.**194**(1971), 126–134. MR**0290166****[6]**C. R. Putnam,*The spectra of operators having resolvents of first-order growth*, Trans. Amer. Math. Soc.**133**(1968), 505–510. MR**0229073**, 10.1090/S0002-9947-1968-0229073-2**[7]**S. M. Patel,*On powers of an operator similar to those of its adjoints*, Rev. Roumaine Math. Pures Appl. (to appear).**[8]**U. N. Singh and Kanta Mangla,*Operators with inverses similar to their adjoints*, Proc. Amer. Math. Soc.**38**(1973), 258–260. MR**0310688**, 10.1090/S0002-9939-1973-0310688-5**[9]**J. G. Stampfli and J. P. Williams,*Growth conditions and the numerical range in a Banach algebra*, Tôhoku Math. J. (2)**20**(1968), 417–424. MR**0243352****[10]**James P. Williams,*Operators similar to their adjoints*, Proc. Amer. Math. Soc.**20**(1969), 121–123. MR**0233230**, 10.1090/S0002-9939-1969-0233230-5

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
47A65

Retrieve articles in all journals with MSC: 47A65

Additional Information

DOI:
http://dx.doi.org/10.1090/S0002-9939-1974-0326453-X

Keywords:
Hilbert space,
operator,
spectrum,
numerical range,
canonical image,
cramped unitary operator,
compact operator

Article copyright:
© Copyright 1974
American Mathematical Society