ABSOLUTE CONTINUITY OF EIGENVECTORS OF TIME-VARYING OPERATORS

ANDREW F. ACKER

Abstract. If \(K(t) \) is a compact, selfadjoint operator function of a real variable \(t \) with distinct eigenvalues at each \(t \), we show that the eigenvalues and eigenvectors are absolutely continuous and that \(\{K(t)\} \) is a commuting set provided that \(K(t) \) commutes with its time derivative \(K'(t) \) at each \(t \). The distinct eigenvalue condition is shown to be necessary.

1. Introduction. Let \(H \) be a real Hilbert space, i.e. the inner product on \(H \) is real valued. Let \(K(t):H\rightarrow H \) be a compact linear operator for each \(t \) in a closed real interval \(J \), and assume \(K(t) \) is absolutely continuous in the operator norm on \(J \). We will prove the following:

Theorem 1. Assume \(\lambda(t) \) is a distinct (at each \(t \in J \), absolutely continuous eigenvalue function of \(K(t) \) on \(J \), and let \(\varphi(t) \) be a corresponding normalized eigenvector function. Then \(\varphi(t) \) can be chosen absolutely continuous on \(J \).

This result can be used inductively in connection with the usual spectral theory for compact, selfadjoint operators to prove the following:

Theorem 2. Assume \(K(t) \) is selfadjoint and has only distinct, nonzero eigenvalues at each \(t \in J \). Then there is a sequence of absolutely continuous (on \(J \)) eigenvalue and (corresponding, normalized) eigenvector functions: \(\{\lambda_n(t), \varphi_n(t)\} \), which include the spectrum of \(K(t) \) at each \(t \), and

\[
K(t)x = \sum \lambda_n(t)\varphi_n(t)\langle \varphi_n(t), x \rangle \quad (x \in H \text{ and } t \in J).
\]

Received by the editors December 18, 1972 and, in revised form, February 16, 1973.

AMS (MOS) subject classifications (1970). Primary 47-00, 47B05, 47B10, 47A55, 15-00, 15A18, 15A27.

Key words and phrases. Compact operator function, eigenvalue and eigenvector functions, "real" Hilbert space, selfadjoint, distinct eigenvalues, absolute continuity, commuting set of operators.

1 This problem occurred in connection with the problem of factoring unbounded operator functions during my doctoral research at Boston University, 1971. I wish to thank Professor Marvin I. Freedman for helpful suggestions.

© American Mathematical Society 1974
The results concerning continuity of eigenvalues and eigenvectors have a natural application to perturbation methods. Also Theorem 2 may be used to prove:

Theorem 3. Let $K(t)$ be selfadjoint and have only distinct, nonzero eigenvalues in J. Assume $K(t)$ commutes with its derivative $K'(t)$ almost everywhere in J. Then $\{K(t) | t \in J\}$ is a commuting set.

All the theorems can be extended to corresponding theorems for unbounded operator functions which have a compact inverse for each $t \in J$. Theorems similar to 2 and 3 are proven for a square matrix function $K(t)$ which is not selfadjoint (and can have the eigenvalue 0) in A. Acker [1]. An example in §4 shows the distinct eigenvalue condition is necessary in each above theorem.

2. **The proof of Theorem 1.** The proof is simplified by agreeing to call an operator A "δ-positive" (for a specified $\delta > 0$) if $|Ax| \geq \delta |x|$ for all vectors x orthogonal to the nullspace of A. One can check that any operator of the form: $K - \lambda I$, where K is compact, I is the identity, and $\lambda \neq 0$, is δ-positive for some, possibly very small, positive δ. If we set $A(t) = K(t) - \lambda(t)I$, then Theorem 1 can be restated as follows:

Lemma. For each $t \in J$, let the operator $A(t) : H \rightarrow H$ be $\delta(t)$-positive (where $\delta(t) > 0$) and have 0 as a distinct eigenvalue. Assume the operator function $A(t)$ is absolutely continuous on J in the operator norm. Then the corresponding (to 0) normalized eigenvector function $\varphi(t)$ can be chosen absolutely continuous on J.

Proof. At each t, $\varphi(t)$ is unique only to a factor of ± 1. (Complex multiples are not in H.) For a specified choice of $\varphi(t)$ and t_0, $t \in J$, let $p(t_0, t) = \langle \varphi(t_0), \varphi(t) \rangle \varphi(t_0)$ and $p_{\perp}(t_0, t) = \varphi(t) - p(t_0, t)$ so that $p_{\perp}(t_0, t)$ is orthogonal to $\varphi(t_0)$ and $|p(t_0, t)|^2 + |p_{\perp}(t_0, t)|^2 = 1$. One can check that

\[(1) \quad A(t_0)p_{\perp}(t_0, t) = [A(t_0) - A(t)]\varphi(t).
\]

Since $A(t_0)$ is $\delta(t_0)$-positive and $|\varphi(t)| = 1$ for all t, equation 1 implies (where $\| \cdot \|$ is the operator norm) that

\[(2) \quad \delta(t_0)|p_{\perp}(t_0, t)| \leq \|A(t) - A(t_0)\| \quad \text{for all } t.
\]

We conclude that $|p_{\perp}(t_0, t)| \rightarrow 0$, $|p(t_0, t)| \rightarrow 1$, and $|\langle \varphi(t_0), \varphi(t) \rangle| \rightarrow 1$ as $t \rightarrow t_0$. For any $t_0 \in J$, there is a relatively open interval $I(t_0)$ containing t_0 on which $\langle \varphi(t_0), \varphi(t) \rangle \neq 0$. Redefine $\varphi(t)$ at each $t \in I(t_0)$ by multiplication by ± 1 so that $\langle \varphi(t_0), \varphi(t) \rangle$ is positive. Then $\langle \varphi(t_0), \varphi(t) \rangle \rightarrow 1$ and $\varphi(t) \rightarrow \varphi(t_0)$ as $t \rightarrow t_0$. Let $I^*(t_0)$ be a relatively open subinterval of $I(t_0)$ in which $\langle \varphi(t_0), \varphi(t) \rangle > \frac{1}{2}$ and $|\varphi(t_0) - \varphi(t)| < \frac{1}{2}$. It is easily seen that
the product \(\langle \varphi(t_1), \varphi(t_2) \rangle \) is positive whenever \(t_1 \) and \(t_2 \) are in \(I^*(t_0) \), and therefore the preceding argument shows that the redefined function \(\varphi(t) \) is continuous throughout \(I^*(t_0) \).

It is intuitive that if \(A(t) \) and \(\varphi(t) \) (which spans the nullspace) are continuous, then \(A(t) \) is uniformly \(\delta \)-positive on a sufficiently small interval \(I^{**}(t_0) \) about \(t_0 \). This is proven starting with the equation:

\[
A(t)\psi = [A(t) - A(t_0)]\psi + A(t_0)[\psi - \langle \psi, \varphi(t_0) \rangle \varphi(t_0)]
\]

which holds whenever \(\psi \) is orthogonal to \(\varphi(t) \).

One can show that \(|\varphi(t_1) - \varphi(t_2)| < \sqrt{2} \| \varphi \| \) for \(t_1, t_2 \in I^*(t_0) \). Use this in connection with equation 2 and the uniform \(\delta \)-positivity of \(A(t) \) to obtain (for a fixed positive \(\delta \))

\[
\delta |\varphi(t_1) - \varphi(t_2)| < \sqrt{2} \| A(t_1) - A(t_2) \| \quad \text{(whenever } t_1, t_2 \in I^{**}(t_0) \text{)}.
\]

This immediately shows \(\varphi(t) \) is absolutely continuous on \(I^{**}(t_0) \).

The result is easily extended to the (compact) interval \(J \).

3. The proof of Theorem 3. It will be shown that if \(K(t) \) commutes with \(K'(t) \) (written: \(K(t) \sim K'(t) \)) a.e. in \(J \), then the absolutely continuous eigenvector functions \(\varphi_n(t) \) of \(K(t) \) are all constant. Assume \(\varphi(t) \) is the eigenvector function corresponding to the eigenvalue function \(\lambda(t) \) and let \(A(t) = K(t) - \lambda(t)I \). Then \(A(t) \) exists a.e. and \(A(t) \sim A'(t) \) a.e. in \(J \). Since \(0 \) is a distinct eigenvalue of \(A(t) \), we conclude that \(\varphi(t) \) is also an eigenvector of \(A'(t) \), i.e. \(A'(t)\varphi(t) = \alpha(t)\varphi(t) \) for a real function \(\alpha(t) \). From \(A(t)\varphi(t) = 0 \) we obtain \(A'(t)\varphi(t) + A(t)\varphi'(t) = 0 \). Therefore \(A(t)\varphi'(t) + \alpha(t)\varphi(t) = 0 \) a.e. The vector product of this equation with \(\varphi(t) \) shows that \(\alpha(t) = 0 \) a.e. in \(J \). Therefore \(\varphi(t) \) and \(\varphi'(t) \) are both eigenvectors of \(A(t) \) at the distinct eigenvalue \(0 \), and it follows that: \(\varphi'(t) = c(t)\varphi(t) \) for a real function \(c(t) \). We find that \(c(t) = \langle \varphi(t), \varphi'(t) \rangle \), so \(c(t) \) is integrable, and, for \(t_0 \in J \), the differential equation has a unique absolutely continuous solution \(\varphi(t) = C(t)\varphi(t_0) \), where \(C(t) = \int_{t_0}^{t} c(t')dt' \). \(C(t) \) is real and continuous, and \(|C(t)| = 1 \). Therefore \(C(t) = 1 \) and \(\varphi(t) = \varphi(t_0) \) for \(t \in J \).

4. The distinct eigenvalue condition is necessary. This is shown by an example. Let \(K_+ \) and \(K_- \) be two square matrices, each with distinct eigenvalues, which do not commute. Define \(K(t) \) as follows:

\[
K(t) = I + t^2K_- \quad \text{when } t \leq 0,
\]

\[
= I + t^2K_+ \quad \text{when } t \geq 0.
\]

Then \(K(t) \) has the following properties: 1. \(K(t) \) and its eigenvalues are absolutely continuous on any finite interval, and the eigenvalues are distinct except at \(t = 0 \). 2. \(K'(t) \) exists and \(K(t) \sim K'(t) \) at all \(t \) including 0. 3. The (continuous) eigenvectors of \(K(t) \) are constant on \((-\infty, 0) \) and
on $(0, \infty)$ and are simply the eigenvectors, respectively, of K_- and K_+. Thus they are not continuous across 0. 4. If $t_1 < 0 < t_2$, then $K(t_1)$ and $K(t_2)$ do not commute.

Reference

1. A. Acker, *Stability results for linear systems involving a time varying unbounded operator*, Doctoral Dissertation, Boston University, 1972, Appendix B.

Department of Mathematics, Louisiana State University in New Orleans, New Orleans, Louisiana 70122

Current address: Mathematisches Institut I, Universität Karlsruhe, 75 Karlsruhe 1, Englerstrasse 2, Germany