CONTINUITY OF CERTAIN CONNECTED FUNCTIONS AND MULTIFUNCTIONS

MELVIN R. HAGAN

Abstract. In this paper it is proved that if X is a 1st countable, locally connected, T_1-space and Y is a σ-coherent, sequentially compact T_1-space, then any nonmingled connectedness preserving multifunction from X onto Y with closed point values and connected inverse point values is upper semicontinuous. It follows that any monotone, connected, single-valued function from X onto Y is continuous. Let X be as above and let Y be a sequentially compact T_1-space with the property that if a descending sequence of connected sets has a nondegenerate intersection, then this intersection must contain at least three points. If f is a monotone connected single-valued function from X onto Y, then f is continuous. An example of a noncontinuous monotone connected function from a locally connected metric continuum onto an hereditarily locally connected metric continuum is given.

In [1] and [2] conditions are given under which an open monotone connected function is continuous. This paper is concerned with conditions under which a monotone connected function is continuous. As Example 2 below shows, a monotone connected function from an hereditarily locally connected metric continuum onto a nonlocally connected metric continuum is not necessarily continuous, and Example 3 shows that a monotone connected function from a locally connected metric continuum onto an hereditarily locally connected metric continuum is not necessarily continuous. It is an open question as to whether or not such a function is continuous if both the domain and range are hereditarily locally connected metric continua.

Some definitions will now be recalled. A multifunction $F: X \rightarrow Y$ is upper semicontinuous at a point $p \in X$ if for any open set $V \subseteq Y$, with $F(p) \subseteq V$, there is an open set $U \subseteq X$, with $p \in U$, such that $F(U) \subseteq V$, and F is nonmingled provided for any $p, q \in X$, either $F(p) = F(q)$ or $F(p) \cap F(q) = \emptyset$.

Received by the editors August 25, 1972.

AMS (MOS) subject classifications (1970). Primary 54C10, 54C60; Secondary 54F20, 54F50.

Key words and phrases. Upper semicontinuous multifunction, connectedness preserving function, monotone function, locally connected, σ-coherent, hereditarily locally connected continuum.

1 Research supported by North Texas State University Faculty Research Grant No. 34590.
See [6] for other terminology and properties of multifunctions. A single-valued function is monotone if point inverses are connected and is connected if the function preserves connectedness. This same terminology will be used for multifunctions also. A space Y is σ-coherent provided any descending sequence of connected sets has a connected intersection. Finally, lim sup A_n will denote the upper limit of a sequence $\{A_n\}$ of sets as defined on p. 337 of [3].

Theorem 1. Let X be a 1st countable, locally connected T_1-space and Y a σ-coherent, sequentially compact T_∞-space. If F is a nonmingled connected multifunction from X onto Y with closed point values, such that F^{-1} has connected point values, then F is upper semicontinuous.

Proof. Suppose F is not upper semicontinuous at the point $p \in X$. Then there is an open set $V \subseteq Y$ such that $F(p) \subseteq V$, but for any open set $U \subseteq X$, with $p \in U$, there is some $x \in U$ such that $F(x)$ is not contained in V. Let $\{U_n\}$ be a countable base at p consisting of open connected sets with $U_{n+1} \subseteq U_n$ for all n. For each n, let $p_n \in U_n$ such that $F(p_n)$ is not contained in V, and let $A_n = (Y-V) \cap F(p_n)$. Then $\{A_n\}$ is a sequence of sets all lying in the closed set $Y-V$. Since Y is sequentially compact, there is a point $q \in (Y-V) \cap \lim \sup A_n$. If $q \in F(p_n)$ for all but finitely many n, then it can be assumed that $q \in F(p_n)$ for all n. Thus, $F(p_1) = F(p_n)$ for all n, since F is nonmingled. Therefore, $F(p_n) \subseteq F(U_n)$ for all n, which implies that $q \in K = \bigcap_{n=1}^{\infty} F(U_n)$. Also, $F(p) \subseteq V$ and $q \in (Y-V)$. Hence, $F(p)$ and q are separated in K since Y is σ-coherent. Therefore, there is a point y in $K-\{F(p) \cup q\}$. Since $y \in F(U_n)$ for all n, $F^{-1}(y) \cap U_n \neq \emptyset$ for all n. Therefore p is a limit point of $F^{-1}(y)$. But by Corollary D2 of [6], $F^{-1}(y)$ is closed. Hence, $p \in F^{-1}(y)$. This implies $y \in F(p)$, which is a contradiction. Thus, it must be the case that $q \notin F(p_n)$ for infinitely many n. Now $F(p_j) \subseteq F(U_n)$ for all $j \geq n$, and every neighborhood of q intersects $F(p_j)$ for infinitely many j. Thus, q is a limit point of $F(U_n)$ for every n. Therefore, $\{F(U_n) \cup q\}$ is a descending sequence of connected sets, and by hypothesis $K = \bigcap_{n=1}^{\infty} (F(U_n) \cup q)$ is connected. But again, $F(p)$ and q are separated in K and therefore there is a point y in $K-\{F(p) \cup q\}$. This leads to the same contradiction as before. Hence, F must be upper semicontinuous.

Corollary. If X and Y are as in Theorem 1 and f is a monotone, connected, single-valued function from X onto Y, then f is continuous.

Proof. A single-valued function is nonmingled, and since Y is T_1, f has closed point values. Also, f monotone means f^{-1} has connected point values.
Theorem 2. Let X be as in Theorem 1 and let Y be a sequentially compact T_1-space with the property that if a descending sequence of connected sets has a nondegenerate intersection, then this intersection must contain at least three points. If f is a monotone connected single-valued function from X onto Y, then f is continuous.

Proof. The proof proceeds exactly as in the proof of Theorem 1. The set K has at least two points $f(p)$ and q, so by hypothesis must contain a third point y distinct from $f(p)$ and q. This leads to the same contradiction as in the proof of Theorem 1. Thus, f must be upper semicontinuous. But this is equivalent to continuity since f is single-valued.

The following example shows that not every hereditarily locally connected metric continuum has the property given in the hypothesis of Theorem 2, that if a descending sequence of connected sets has a nondegenerate intersection, then the intersection has at least three points.

Example 1. This is a modification of an example given in [4, p. 284]. In the plane let C_{nk} denote the semicircle given by

\[(x - (2k - 1)/2^n)^2 + y^2 = 1/4^n, \quad y \geq 0.\]

Denote by L_{nk} the straight line segment given by $x = (2k - 1)/2^n, 0 \leq y \leq 1/2^n$. Let Q_{nk} denote the semicircle given by

\[(x - (2k - 1)/(2 \cdot 3^n))^2 + y^2 = 1/(4 \cdot 9^n), \quad y \leq 0.\]

Denote by R_{nk} the straight line segment given by

\[x = (2k - 1)/(2 \cdot 3^n), \quad -(2k - 1)/(2 \cdot 3^n) \leq y \leq 0.\]

Let H_n denote the union of all the C_{nk} and L_{nk}, $1 \leq k \leq 2^{n-1}$, and denote by K_n the union of all the Q_{nk} and R_{nk}, $1 \leq k \leq 3^n$. Finally, let X denote the union of all the H_n and all the K_n, n varying over all positive integers, along with the interval $I = [0, 1]$. Then X is an hereditarily locally connected continuum. Let D denote the set of end points of all upper semicircles C_{nk} and T the set of end points of all lower semicircles Q_{nk}, and let $p = (0, 0)$ and $q = (1, 0)$. Let $U_1 = (X - I) \cup D \cup T$ and for $n \geq 1$, let $U_{n+1} = (U_n - (H_n \cup K_n)) \cup \{p, q\}$. Then $\{U_n\}$ is a descending sequence of connected sets whose intersection consists of just the points p and q.

In the following example, an hereditarily locally connected σ-coherent continuum is mapped by a noncontinuous one-to-one connected function f onto a nonlocally connected, 1st countable continuum. The function f^{-1} is also connected and noncontinuous. Since all the hypotheses of Theorem 1 is satisfied for f^{-1} except local connectedness of the domain of f^{-1}, this property is necessary in Theorem 1.
Example 2. Choose a polar coordinate system on the plane and for each positive integer \(n \), let \(L_n \) denote the segment \(\{(r, (\pi/2)/n) | 0 \leq r \leq 1/n\} \). Let \(X = \bigcup_{n=1}^\infty L_n \). Now choose a rectangular coordinate system on the plane with the same origin, and for each positive integer \(n \), let \(S_n \) denote the segment \(\{(x, y) | 0 \leq x \leq 1, y = x/n\} \), and \(S_0 \) the segment \(\{(x, 0) | 0 \leq x \leq 1\} \). Then \(Y = \bigcup_{n=0}^\infty S_n \) is a nonlocally connected non-\(\sigma \)-coherent metric continuum. Define a function \(f \) from \(X \) onto \(Y \) as follows: For each \(n \geq 1 \), let \(p_n = (1/n, (\pi/2)/n) \) in polar coordinates, and \(q_n = (1, 1/n) \) in rectangular coordinates. Let \(p_0 = (0, 0) \) and \(q_0 = (1, 0) \). Let \(f \) be the function that takes \(L_n \) linearly onto \(S_{n-1} \) such that \(f(p_0) = p_0 \) and \(f(p_n) = q_{n-1}, n \geq 1 \). Then \(f \) is one-to-one, connected, and not continuous at \(p_0 \). Also, the function \(f^{-1} \) taking \(Y \) onto \(X \) satisfies all the hypothesis of Theorem 1 except that the domain \(Y \) is not locally connected, and \(f^{-1} \) is not continuous at \(q_0 \). Thus, local connectedness of the domain space is necessary in Theorem 1.

Finally, the following is an example of a noncontinuous, monotone, connected function from a locally connected metric continuum onto an hereditarily locally connected metric continuum.

Example 3. Choose a rectangular coordinate system on Euclidean 3-space \(E_3 \) and let \(p = (0, 0, 0) \) and \(q = (1, 0, 0) \). Also, choose a spherical coordinate system, as defined on p. 355 of [5], with origin \(p \). Thus \(q = (1, 0, \pi/2) \) in spherical coordinates. For each \(n \), let

\[
p_n = (1/n, \pi/2, \pi/(2n)) \quad \text{and} \quad q_n = \left((2^n - 1)/2^n, 0, \pi/2\right)
\]

in spherical coordinates. If \(a \) and \(b \) are end points of a straight line segment, let \(ab \) denote the ordered segment from \(a \) to \(b \). Let \(P_n \) denote the plane determined by the three points \(p, p_n, q_n \), \(L_n \) the ordered segment from \(p_n \) to \(q_n \), and \(S_n \) the ordered segment from \(p \) to \(p_n \).

Define inductively a sequence of finite ordered subsets of \(pq \) as follows:

Let \(H_2 = \{x_{21}, x_{22}\} \), where \(x_{21} \) and \(x_{22} \) are the mid points, respectively, of the segments \(pq_1 \) and \(q_1q_2 \). Let \(H_3 = \{x_{31}, x_{32}, x_{33}, x_{34}, x_{35}\} \), where these points are, respectively, the mid points of the segments \(px_{21}, x_{21}q_1, q_1x_{22}, x_{22}q_2, q_2q_3 \). Assuming \(H_{n-1} \) has been defined, let \(H_n = \{x_{n1}, \ldots, x_{nk_n}\} \), where the \(x_{ni} \) are the mid points of the ordered collection of segments of \(pq_n \) determined by the points of \(H_{n-1} \). The order of the listing in \(H_n \) is by increasing distance from \(p \), where \(x_{n1} \) is the mid point of the segment \(px_{n-1,1} \) and \(x_{nk_n} \) is the mid point of the segment \(q_{n-1}q_n \). Note that the union of the \(H_n \)'s is a countable dense subset of \(pq \).

For each \(n \geq 2 \) and each \(j, 1 \leq j \leq k_n \), let \(L_{nj} \) denote the line segment parallel to \(L_n \) with one end point at \(x_{nj} \) and the other end point, denoted by \(s_{nj} \), on the segment \(S_n \). Thus, \(\{s_{n1}, \ldots, s_{nk_n}\} \) is a finite subset of \(S_n \) and each \(s_{nj} \) is joined to the corresponding \(x_{nj} \) by the segment \(L_{nj} \) lying in the plane \(P_n \) and parallel to \(L_n \).
Let \(K_n = (\bigcup_{i=1}^{n} H_i) \cup \{q_1, \ldots, q_{n-1}\} \). For each point \(y \in K_n \), let \(L_y \) denote the segment parallel to \(S_n \) with one end point at \(y \) and the other end point on \(L_n \). Thus, each \(L_y \) lies in the plane \(P_n \). Let \(Q_1 = pq \cup pp_1 \cup p,g_1 \), and for \(n \geq 2 \), let \(Q_n \) denote the union of the segments \(pq, S_n, L_n, L_y, y \in K_n \), and \(L_n, 1 \leq j \leq k_n \). Then \(X = \bigcup_{n=1}^{\infty} Q_n \) is a locally connected continuum.

Remark. Let \(R_n \) denote the plane given by \(z = y/n \) in rectangular coordinates, where \(n \) is a positive integer. It is to be understood that any arc of a circle subsequently described with end points on \(pq \) and lying in \(R_n \) is to have altitude less than one-half of the minimum of the altitudes of all such previously described arcs and is disjoint from all such arcs except possibly at some end points.

\[\text{Figure 1} \]
Define a function f on X into E_3 as follows: It will be sufficient to define f on each Q_n. Note that $Q_1 = pq \cup pp_1 \cup p q_1$. The function f will be the identity function on pq. Let f take pp_1 homeomorphically onto an arc of a circle of radius one-half the distance from p to q_1 lying in R_1 with end points p and q_1, with $f(p_1) = q_1$, and let $f(p, q_1) = q_1$. The function f will now be defined on Q_2 and it will be clear that the same process can be used on any Q_n. The set K_3 consists of the points $x_{31}, x_{21}, x_{32}, q_1, x_{33}, x_{22}, x_{34}, q_2, x_{35}$, and Q_3 is

$$pq \cup S_3 \cup L_3 \cup \left(\bigcup_{i=1}^{3} L_{3i} \right) \cup \left(\bigcup \{ L_y \mid y \in K_3 \} \right).$$

Define f on S_3, which is $ps_{31} \cup s_{31}s_{32} \cup s_{32}s_{33} \cup s_{33}s_{34} \cup s_{34}s_{35} \cup s_{35}p_3$, as follows: Let f take ps_{31} homeomorphically onto an arc of a circle lying in R_3 where the arc has end points p and x_{31} and altitude one-half the distance from p to x_{31}, and $f(s_{31}) = x_{31}$. Let f take $s_{31}s_{32}$ homeomorphically onto an arc of a circle lying in R_3 where the arc has end points x_{31}, x_{32} and is subject to the conditions in the above remark, and $f(s_{32}) = x_{32}$. Map segments $s_{32}s_{33}, s_{33}s_{34}, s_{34}s_{35}, s_{35}p_3$ in a similar manner. Let f take $s_{33}p_3$ homeomorphically onto an arc of a circle lying in R_3 where the arc has end points x_{35}, q_3 and subject to the conditions in the above remark, and $f(s_{33}) = x_{35}$ and $f(p_3) = q_3$. Let $f(L_3) = q_3$ and $f(L_3) = x_{31}, 1 \leq i \leq 5$.

For $y = x_{31} \in K_3$, L_y intersects L_{3j} at, say z_{1j}, $1 \leq j \leq 5$, where $z_{11} = x_{31}$, and L_y intersects L_3 at, say z_3. Map $x_{31}z_{12}$ homeomorphically onto an arc of a circle lying in R_3 satisfying the conditions in the above remark, with end points x_{31}, x_{32}, where $f(z_{12}) = x_{32}$. Let f take $z_{12}z_{13}$ homeomorphically onto an appropriate arc of a circle lying in R_9 with end points x_{32}, x_{33}, where $f(z_{13}) = x_{33}$. Map $z_{13}z_{14}$ homeomorphically onto an appropriate arc.

Figure 2
of a circle lying in R_3 with end points x_{33}, x_{34}, where $f(z_{15}) = x_{34}$. Map $z_{15}z_{16}$ in a similar manner. Let f take $z_{15}z_{3}$ homeomorphically onto an appropriate arc of a circle lying in R_3 with end points x_{35}, q_3, where $f(z_{15}) = x_{35}$ and $f(z_{3}) = q_3$. This defines f on L_y, where $y = x_{31}$. Define f similarly on each L_y, $y \in K_3$, where the arcs chosen are subject to the conditions in the above remark. The function is now defined on Q_3. The set Q_3 and its image $f(Q_3)$ are displayed in Figures 1 and 2, respectively. In Figure 2 the curves are supposed to represent circular arcs. Define f in a similar manner on all the Q_n, where the initial arcs are to be chosen in R_n having radius one-half the distance from p to x_{n1}, and subject to the conditions in the above remark.

The resulting function f is monotone since the inverse of a point is either a point or a segment, f maps connected sets onto connected sets, $f(X)$ is a hereditarily locally connected continuum in E_3, but f is not continuous at p since the sequence $\{p_n\}$ converges to p and the sequence $\{f(p_n)\}$ converges to $q \neq f(p)$.

BIBLIOGRAPHY

DEPARTMENT OF MATHEMATICS, NORTH TEXAS STATE UNIVERSITY, DENTON, TEXAS 76203