On integrated screens
Author:
J. C. Beidleman
Journal:
Proc. Amer. Math. Soc. 42 (1974), 3638
MSC:
Primary 20D10
MathSciNet review:
0327891
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: Let be a screen with support and let denote the saturated formation of finite solvable groups which is locally induced by . For each prime p, let . Then is an integrated screen which locally induces and . The purpose of this note is to prove the following theorems. Theorem 1. Assume that for each finite solvable group G the izers of G satisfy the strict coveravoidance property. Then is an integrated screen; that is for each prime p. Theorem 2. Assume that for each group G an izer of an izer of G is an izer of G. Then for each prime p.
 [1]
Roger
Carter and Trevor
Hawkes, The \cal𝐹normalizers of a finite soluble
group, J. Algebra 5 (1967), 175–202. MR 0206089
(34 #5914)
 [2]
Klaus
Doerk, Zur Theorie der Formationen endlicher auflösbarer
Gruppen, J. Algebra 13 (1969), 345–373
(German). MR
0246968 (40 #237)
 [3]
Gary
M. Seitz and C.
R. B. Wright, On complements of 𝔉residuals in finite
solvable groups, Arch. Math. (Basel) 21 (1970),
139–150. MR 0271234
(42 #6117)
 [4]
Charles
R. B. Wright, On screens of 𝔏izers of finite solvable
groups, Math. Z. 115 (1970), 273–282. MR 0262365
(41 #6973)
 [1]
 R. Carter and T. Hawkes, The normalizer of a finite soluble group, J. Algebra 5 (1967), 175202. MR 34 #5914. MR 0206089 (34:5914)
 [2]
 K. Doerk, Zur Theorie der Formationen endlicher auflösbarer Gruppen, J. Algebra 13 (1969), 345373. MR 40 #237. MR 0246968 (40:237)
 [3]
 G. Seitz and C. Wright, On complements of residuals in finite solvable groups, Arch. Math. (Basel) 21 (1970), 139150. MR 42 #6117. MR 0271234 (42:6117)
 [4]
 C. Wright, On screens and izers of finite solvable groups, Math. Z. 115 (1970), 273282. MR 41 #6973. MR 0262365 (41:6973)
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC:
20D10
Retrieve articles in all journals
with MSC:
20D10
Additional Information
DOI:
http://dx.doi.org/10.1090/S00029939197403278911
PII:
S 00029939(1974)03278911
Keywords:
Screen,
formation,
izer,
solvable
Article copyright:
© Copyright 1974
American Mathematical Society
