Two lifting theorems
Author:
Stuart P. Lloyd
Journal:
Proc. Amer. Math. Soc. 42 (1974), 128-134
MSC:
Primary 46G15
DOI:
https://doi.org/10.1090/S0002-9939-1974-0328588-4
MathSciNet review:
0328588
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: It is assumed that the measure algebra involved has cardinality , and it is assumed further that
. Then liftings exist when the
-field is not necessarily complete, and strong Borel liftings exist in the locally compact
-compact metric case.
- [1] A. Ionescu Tulcea and C. Ionescu Tulcea, Topics in the theory of lifting, Ergebnisse der Math. und ihrer Grenzgebiete, Band 48, Springer-Verlag, New York, 1969. MR 43 #2185. MR 0276438 (43:2185)
- [2] S. P. Lloyd, On finitely additive set functions, Proc. Amer. Math. Soc. 14 (1963), 701-704. MR 28 #4071. MR 0160861 (28:4071)
- [3] Zbigniew Semadeni, Banach spaces of continuous functions. I, PWN, Warsaw, 1971.
- [4] J. von Neumann and M. H. Stone, The determination of representative elements in the residual classes of a Boolean algebra, Fund. Math. 25 (1935), 353-378.
Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46G15
Retrieve articles in all journals with MSC: 46G15
Additional Information
DOI:
https://doi.org/10.1090/S0002-9939-1974-0328588-4
Keywords:
Lifting theory
Article copyright:
© Copyright 1974
American Mathematical Society