Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A note on zero-dimensional spaces with the star-finite property


Author: Hans-Christian Reichel
Journal: Proc. Amer. Math. Soc. 42 (1974), 307-311
MSC: Primary 54D20; Secondary 54E35
DOI: https://doi.org/10.1090/S0002-9939-1974-0328863-3
MathSciNet review: 0328863
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The paper provides necessary and sufficient conditions for a weakly zero-dimensional metrizable space to be strongly paracompact, i.e., to have the star-finite property. The characterizations use special basis properties of uniformities which induce the topology of X, and yield further characteristics of the class of all metric spaces with ind $ X = 0$ and Ind $ X > 0$.


References [Enhancements On Off] (What's this?)

  • [1] B. Banaschewski, Über nulldimensionale Räume, Math. Nachr. 13 (1955), 129-140. MR 19, 157. MR 0086287 (19:157b)
  • [2] B. Fitzpatrick, Jr. and R. M. Ford, On the equivalence of small and large inductive dimension in certain metric spaces, Duke Math. J. 34 (1967), 33-37. MR 34 #5059. MR 0205226 (34:5059)
  • [3] J. de Groot, Non-archimedean metrics in topology, Proc. Amer. Math. Soc. 7 (1956), 948-953. MR 18, 325. MR 0080905 (18:325a)
  • [4] A. F. Monna, Remarques sur les métriques non-archimédiennes. I, II, Nederl. Akad. Wetensch. Proc. 53, 470-481=Indag. Math. 12 (1950), 122-133; ibid. 53, 625-635=Indag. Math. 12 (1950), 179-191. MR 12, 41, 1002. MR 0035982 (12:41b)
  • [5] Jun-iti Nagata, Modern dimension theory, Bibliotheca Mathematica. Vol. VI, Interscience, New York, 1965. MR 34 #8380. MR 0208571 (34:8380)
  • [6] P. Nyikos, N-compact spaces, Dissertation, Carnegie-Mellon University, Pittsburgh, Pa., 1972.
  • [7] P. Nyikos and H. C. Reichel, On the structure of zero-dimensional spaces (to appear).
  • [8] H. C. Reichel, On the metrization of the natural topology on the space $ {A^B}$, J. Math. Anal. Appl. 34 (1971), 644-647. MR 43 #1116. MR 0275359 (43:1116)
  • [9] P. Ucsnay, Über uniforme Räume, Bonn. Math. Schr. 48 (1970), 21-30.
  • [10] A. C. M. van Rooij, Non-archimedean uniformities, Kyungpook Math. J. 10 (1970), 21-30. MR 0264598 (41:9190)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 54D20, 54E35

Retrieve articles in all journals with MSC: 54D20, 54E35


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1974-0328863-3
Article copyright: © Copyright 1974 American Mathematical Society

American Mathematical Society