A SIMPLE ALTERNATIVE PROBLEM FOR FINDING PERIODIC SOLUTIONS OF SECOND ORDER ORDINARY DIFFERENTIAL SYSTEMS1

J. W. BEBERNES

Abstract. Existence of solutions for $x'' = f(t, x, x')$, $x(0) = x(1)$, $x'(0) = x'(1)$ are proven by considering a simple alternative problem to which Leray-Schauder degree arguments can be directly applied.

1. Introduction. In this paper, we consider the existence of solutions to the periodic boundary value problem (PBVP)

(1) $x'' = f(t, x, x')$,

(2) $x(0) = x(1), \quad x'(0) = x'(1)$.

Knobloch [4], Mawhin [5], Schmitt [6], and Bebernes and Schmitt [1] have recently considered this problem using degree-theoretic arguments—either finite or infinite dimensional.

Using only the basic properties of Leray-Schauder degree and applying these degree arguments to a simple alternative problem associated with (1)-(2), we obtain in this paper a single basic result (Theorem 2.1) which contains and in some cases permits slight generalizations of most of the results of the above mentioned papers.

2. The basic theorem. Let $I = [0, 1]$, \mathbb{R}^n be n-dimensional Euclidean space with Euclidean norm $\|\cdot\|$ and inner product (\cdot, \cdot), and let $D \subseteq I \times \mathbb{R}^n \times \mathbb{R}^n$ be a bounded open set in the relative topology of $I \times \mathbb{R}^n \times \mathbb{R}^n$ containing $\{(t, 0, 0) : t \in I\}$. Let $F: I \times \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n$ be a continuous function and consider

(3) $x'' = F(t, x, x').$

For each $\lambda \in [0, 1]$, associate with (3) the equation

(4) $x'' = \lambda F(t, x, x') + (1 - \lambda)x.$

Received by the editors April 6, 1973.

Key words and phrases. Periodic boundary value problems, alternative problems, Leray-Schauder degree, Nagumo-Hartman condition, Lyapunov-like functions.

1 This research was supported by the U.S. Air Force under Grant AFOSR-72-2379.

© American Mathematical Society 1974
and assume:

(H) If \(x(t) \) is a solution of (4)-(2), then \((t, x(t), x'(t)) \in D \) for all \(t \in I \) or there exists \(\tau \in I \) such that \((\tau, x(\tau), x'(\tau)) \notin \bar{D} \).

Theorem 2.1. The periodic boundary value problem (3)-(2) has at least one solution such that \((t, x(t), x'(t)) \in D \) for all \(t \in I \).

Proof. The periodic boundary value problem

\[
(5) \quad x'' - x = 0, \quad x(0) = x(1), \quad x'(0) = x'(1)
\]

has no nontrivial solutions. Let \(H(t, x, x') = F(t, x, x') - x \), then \(x(t) \) is a solution of (4)-(2) if and only if

\[
(6) \quad x(t) = \lambda \int_0^1 G(t, s)H(s, x(s), x'(s)) \, ds
\]

where \(G(t, s) \) is the unique Green's function for (5).

Let \(B = \{ x \in C'[0,1] : x(0) = x(1), x'(0) = x'(1) \} \) with norm

\[
|x| = \max_i \| x(i) \| + \max_i \| x'(i) \|
\]

be the Banach space under consideration, and define

\[
\Omega = \{ y \in B : (t, y(t), y'(t)) \in D \text{ for all } t \in I \}.
\]

Note that \(\Omega \) is a bounded open subset of \(B \).

Define the map \(T : \Omega \to B \) where \(\Omega \) is the closure of \(\Omega \) by

\[
(7) \quad (Ty)(t) = \int_0^1 G(t, s)H(s, y(s), y'(s)) \, ds.
\]

By standard arguments, \(T(\bar{\Omega}) \subset B \), \(T \) is continuous, and \(\text{cl}(T(\bar{\Omega})) \) is compact in \(B \).

If \(0 \notin (I-\lambda T)(\partial \Omega) \) where \(\partial \Omega \) is the boundary of \(\Omega \) for all \(\lambda \in [0,1] \), then by the invariance under compact homotopy property of the Leray-Schauder degree [7, p. 92], the degree \(\text{deg}(I-\lambda T, \Omega, 0) = \text{constant} \) for all \(\lambda \in [0,1] \). That \(0 \notin (I-\lambda T)(\partial \Omega) \) is equivalent to the existence of a solution \(x(t) \) of the PBVP (4)-(2) with \((t, x(t), x'(t)) \in \bar{D} \) for all \(t \in I \) and \((t, x(t), x'(t)) \in \partial D \) for some \(t \in I \); but by assumption (H) there exists no such solution \(x(t) \) of (4)-(2) with \((t, x(t), x'(t)) \in \bar{D} \) for all \(t \in I \) and \((t, x(t), x'(t)) \in \partial D \) for some \(t \in I \). Hence, \(\text{deg}(I-T, \Omega, 0) = \text{deg}(I, \Omega, 0) = 1 \). By the existence property of the Leray-Schauder degree [7, p. 88], there exists \(x \in \Omega \) such that \((I-T)x = 0 \). This means that there exists a solution \(x(t) \) of the PBVP (3)-(2) with \((t, x(t), x'(t)) \in D \) for all \(t \in I \).

3. **Applications of the basic theorem.** In this section, we illustrate how Theorem 2.1 can be used to prove existence results for PBVP (1)-(2).
The first result is known (e.g., [1], [4], or [5]), but it well illustrates the power of our basic theorem.

Theorem 3.1. If \(f(t, x, x') \) is continuous on \(E_R = \{(t, x, x'): t \in I, \|x\| < R, \|x'\| < \infty \} \) and satisfies:

1. \(\|x'\|^2 + \langle x, f(t, x, x') \rangle > 0 \) for all \((t, x, x') \in E_R \) provided \(\|x\| = R \) and \(\langle x, x' \rangle = 0 \);
2. \(\|f(t, x, x')\| \leq \varphi(\|x'\|) \) for all \((t, x, x') \in E_R \) where \(\varphi \) is a positive continuous function on \([0, \infty)\) with \(\int_0^\infty \frac{\varphi(s)}{s} \, ds = +\infty \);
3. there exists \(a \geq 0, K \geq 0 \) such that
 \[\|f(t, x, x')\| \leq 2a(\|x'\|^2 + \langle x, f(t, x, x') \rangle) + K \quad \text{for all} \quad (t, x, x') \in E_R; \]

then there exists a solution \(x(t) \) of the PBVP (1)-(2) with \((t, x(t), x'(t)) \in E_R \).

Proof. Let \(\delta_M(s) \) be a continuous function on \([0, \infty)\) with \(\delta_M(s) = 1 \) on \([0, M]\) and \(\delta_M(s) = 0 \) for \(s \geq 2M \) where \(M = M(\alpha, K, R) \) is the Nagumo-Hartman bound (see Hartman [3, p. 429]).

Define
\[
F(t, x, x') = \delta_M(\|x'\|)f(t, x, x') \quad \text{on} \quad E_R, \quad \text{and} \quad F(t, x, x') = \left(\frac{R}{\|x\|}\right)F(t, R\|x\|, x') \quad \text{if} \quad \|x\| \geq R.
\]

Then \(F(t, x, x') \) is continuous and bounded on \(I \times \mathbb{R}^n \times \mathbb{R}^n \) and satisfies (8) provided \(\|x\| \geq R \) and \(\langle x, x' \rangle = 0 \), (9), and (10) for all \((t, x, x') \in I \times \mathbb{R}^n \times \mathbb{R}^n \).

The proof will be completed by showing that there can be constructed an open bounded set \(D \subset I \times \mathbb{R}^n \times \mathbb{R}^n \) containing \(\{(t, 0, 0): t \in I\} \) such that solutions of PBVP (4)-(2) satisfy hypothesis (H) relative to \(D \).

For each \(\lambda \in [0, 1] \), let \(\tilde{F}_\lambda(t, x, x') = \lambda F(t, x, x') + (1-\lambda)F(t, x, x') \) where \(F \) is defined as above. Then for all \(\lambda \in [0, 1] \) and all \((t, x, x') \in I \times \mathbb{R}^n \times \mathbb{R}^n \),

\[
\|x'\|^2 + \langle x, \tilde{F}_\lambda(t, x, x') \rangle > 0 \quad \text{provided} \quad \|x\| \geq R
\]

and \(\langle x, \lambda \rangle = 0 \). Let \(x(t) \) be any solution of (4)-(2). Define \(u(t) = \|x(t)\|^2 = \langle x(t), x(t) \rangle \). Because \(u(t) \) satisfies the periodic boundary conditions (2), \(u(t) \) can assume its maximum at \(t_0 \in I \) only if \(u(t_0) = 0, u'(t_0) \leq 0 \). Claim \(u(t) < R^2 \) for all \(t \in I \). Assume not; then there exists \(t_0 \in I \) at which \(u(t) \) assumes its maximum with \(u(t_0) \geq R^2, u'(t_0) = 0, \) and \(u''(t_0) \leq 0 \). But (11) implies that \(u''(t_0) > 0 \) which is a contradiction. Hence, \(\|x(t)\| < R \) for all \(t \in I \). For \((t, x, x') \in E_R \) and \(\lambda \in [0, 1] \), \(F_\lambda(t, x, x') \) is bounded which implies that \(F_\lambda(t, x, x') \) satisfies a Nagumo-Hartman condition (conditions (9) and (10) with \(x = 0 \) and a \(K' \) in general different from \(K \) and \(\varphi(s) = K' \)). Hence, there exists a \(M' > 0 \) such that if \(x(t) \) is any solution of (4) on \(I \) with \(\|x(t)\| < R \), then \(\|x'(t)\| < M' \).
Define $D = \{(t, x, x'): t \in I, \|x\| < R, \|x'\| < M'\}$. From the observations made above it is immediate that solutions of (4)-(2) satisfy (H) relative to D. By Theorem 2.1, the PBVP (3)-(2) has a solution $x(t)$ with $\|x(t)\| < R$. Since $F(t, x, x')$ satisfies (9) and (10), $\|x'(t)\| < M$ on $[0, 1]$ which implies that $x(t)$ is a solution of PBVP (1)-(2) on I with $(t, x(t), x'(t)) \in E_R$.

Equality can be permitted in (8) by an approximating argument like the one given in [3, p. 433].

The preceding theorem can be generalized by replacing $\|x\|^2$ by a function $V(t, x)$ which plays essentially the same role. In so doing, we obtain results similar to those obtained by Knobloch [4] and Mawhin [5].

Assume $f(\tau, x, x') : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n$ is continuous and let R^+ denote the nonnegative reals.

Definition. Let $V \in C^2(I \times \mathbb{R}^n \times \mathbb{R}^n, R^+)$ be such that:

(a) there exists $R > 0$ such that $\Phi = \{x \in \mathbb{R}^n : V(t, x) < R, t \in I\}$ is bounded,

(b) $U(t, x, x') = V_{xx}(t, x) + 2(V_{tx}(t, x), x') + (V_{x}(t, x), x') \geq 0$,

(c) $V(t, x, x') = U(t, x, x') + (V_x(t, x), f(t, x, x')) > 0$ provided $V(t, x) = R$

and $V(t, x) + (V_x(t, x), x') = 0$,

(d) $(V_x(t, x), x') > 0$ for all (t, x) such that $V(t, x) = R$,

(e) $V(0, x) = V(1, x)$, $V_t(0, x) + (V_x(0, x), x') \geq V_t(1, x) + (V_x(1, x), x')$.

Any such V is called a bounding Lyapunov function relative to (1).

Theorem 3.2. If V is a bounding Lyapunov function for (1), then for every $\lambda \in [0, 1]$ every solution $x(t)$ of the PBVP:

\[
x'' = f_\lambda(t, x, x')
\]

where $f_\lambda = \lambda f + (1 - \lambda)f$ is such that $V(\tau, x(\tau)) > R$ for some $\tau \in I$ or $V(t, x(t)) < R$ for all $t \in I$.

Proof. Let $x(t)$ be any solution of the PBVP (12)-(2) and let $m(t) = V(t, x(t))$, then $m'(t) = V_t(t, x(t)) + (V_x(t, x(t)), x'(t))$ and

\[
m''(t) = U(t, x(t), x'(t)) + (V_x(t, x(t)), f_\lambda(t, x(t), x'(t))).
\]

By (b), (c), and (d), $m''(t) > 0$ if $V(t, x(t)) = R$ and $V_t(t, x(t)) + (V_x(t, x(t)), x'(t)) = 0$. If there exists $\tau \in I$ such that $m(\tau) > R$, we are through.

Assume $m(t) \leq R$ for all $t \in [0, 1]$. If there exists $t_0 \in I$ such that $m(t_0) = R$, then $m'(t_0) = 0$ and $m''(t_0) \leq 0$ since $m(0) = m(1)$ and $m'(t_0) \geq m'(1)$ by (e). But this is impossible by the observation made above that $m''(t_0) > 0$. Hence, $m(t) < R$ on I and the conclusion of the theorem follows.

Our next theorem is similar to Theorem 6.1 [5].
Theorem 3.3. If V is a positive definite bounding Lyapunov function relative to (1) and if there exists $S > 0$ such that for any $\lambda \in [0, 1]$ any solution $x(t)$ of PBVP (12)-(2) with $V(t, x(t)) < R$ on I satisfies $\|x'(t)\| < S$ for $t \in I$, then PBVP (1)-(2) has at least one solution $x(t)$ with $V(t, x(t)) < R$.

Proof. Let $D = \{(t, x, x'): t \in I, V(t, x) < R, \|x'\| < S\}$. By Theorem 3.2, solutions of (12)-(2) satisfy (H) relative to D. Hence, by Theorem 1.2, the conclusion follows.

There are several ways of ensuring the a priori bound condition on the derivative of solutions of (12)-(2) and hence we have the following corollaries.

Corollary 3.4. If V is a bounding positive definite Lyapunov function for (1) and if $f(t, x, x')$ satisfies (9) and (10) for all $t \in I$, $x \in \Phi$, $\|x'\| < \infty$, then PBVP (1)-(2) has a solution $x(t) \in \Phi$ for all $t \in I$.

Corollary 3.5. If V is a bounding positive definite Lyapunov function for (1), $f(t, x, x')$ satisfies (9) for all $t \in I$, $x \in \Phi$, $\|x'\| < \infty$, and if there exists $\beta \geq 0$, $L \geq 0$ such that

$$\|f(t, x, x')\| \leq \beta(U(t, x, x') + \langle V_x(t, x), f(t, x, x') \rangle) + L$$

for all $t \in I$, $x \in \Phi$, and $\|x'\| \leq \infty$, then PBVP (1)-(2) has a solution $x(t) \in \Phi$ for all $t \in I$.

Corollary 3.6. If V is a bounding positive definite Lyapunov function for (1), if $f(t, x, x')$ satisfies (9) for all $t \in I$, $x \in \Phi$, $\|x'\| < \infty$, and if there exists a function $\rho(t) \in C^2(I)$ such that

$$\|f(t, x, x')\| \leq \rho''(t) \quad \text{for all } t \in I, x \in \Phi, \|x'\| < \infty,$$

then PBVP (1)-(2) has a solution $x(t) \in \Phi$ for all $t \in I$.

4. **Further consequences.** In this section, we present two further applications of Theorem 2.1. The first theorem presented shows that the bounding set Φ need not be given in terms of a bounding Lyapunov function. Assume $f(t, x, x') : I \times \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n$ is continuous.

Theorem 4.1. Let G be a bounded convex open set in \mathbb{R}^n containing 0 and assume there is a function $N : \partial G \to \mathbb{R}^n$ satisfying:

$$\langle N(x), x \rangle > 0 \quad \text{for all } x \in \partial G,$$

$$G \subseteq \{y : \langle N(x), y - x \rangle \leq 0 \quad \text{for each } x \in \partial G\},$$

$$\langle N(x), f(t, x, x') \rangle > 0 \quad \text{for all } t \in I, x \in \partial G,$$

$$x' \text{ with } \langle N(x), x' \rangle = 0,$$

then for every $\lambda \in [0, 1]$ every solution $x(t)$ of (12)-(2) is such that $x(\tau) \notin G$ for some $\tau \in I$ or $x(t) \in G$ for all $t \in I$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Remark. Conditions (16) and (17) say that \(N(x) \) is an outer normal for \(G \). Gustafson and Schmitt [2] have used a similar outer normal condition to study existence of periodic solutions for delay differential equations.

Proof. Let \(x(t) \) be any solution of (12)-(2). If \(x(\tau) \notin G \) for some \(\tau \in I \), we are through so assume \(x(t) \in G \) for all \(t \in I \).

If \(x(t_0) \in \partial G \) for some \(t_0 \in I \), we may assume \(t_0 \in [0, 1) \). By (16) and (18), \(\langle N(x(t_0)), f_x(t_0, x(t_0), x'(t_0)) \rangle > 0 \) and hence there is an \(h > 0 \) such that \(\langle N(x(t_0)), x''(t) \rangle > 0 \) for all \(t \in [t_0, t_0+h] \). Since \(x(t) \in G \), \(\langle N(x(t_0)), x'(t_0) \rangle = 0 \). Looking at the Taylor expansion for \(x(t) \), we have immediately that

\[
\langle N(x(t_0)), x(t) - x(t_0) \rangle = (t - t_0)\langle N(x(t_0)), x'(t_0) \rangle + \frac{1}{2}(t - t_0)^2\langle N(x(t_0)), y(\tilde{t}) \rangle
\]

where \(y(\tilde{t}) = (x_1'(\tilde{t}), \ldots, x_n'(\tilde{t})) \) and \(t_0 < \tilde{t} < t < t_0 + h \) for all \(i = 1, \ldots, n \). From this, \(\langle N(x(t_0)), x(t) - x(t_0) \rangle > 0 \) meaning that \(x(t) \notin G \), which is a contradiction.

Our existence theorem then follows.

Theorem 4.2. If \(G \) is a bounded convex open set in \(\mathbb{R}^n \) containing 0, if there is a function \(N: \partial G \to \mathbb{R}^n \) satisfying (16), (17), and (18), and if there exists \(S > 0 \) such that for any \(\lambda \in [0, 1] \) any solution \(x(t) \) of PBVP (12)-(2) with \(x(t) \in G \) for all \(t \in I \) satisfies \(\|x'(t)\| < S \) for \(t \in I \), then PBVP (1)-(2) has at least one solution with \(x(t) \in G \) for all \(t \in I \).

Proof. Let \(D = \{(t, x, x'): t \in I, x \in G, \|x'\| < S\} \). By Theorem 4.1 solutions of (11)-(2) satisfy (H) relative to \(D \). Result then follows immediately from Theorem 2.1.

Remark. One can state corollaries of the above theorem analogous to Corollaries 3.4, 3.5, and 3.6.

In \(\mathbb{R}^n \), let \(x \leq y \) if and only if \(x_i \leq y_i, 1 \leq i \leq n \), and \(x < y \) if and only if \(x_i < y_i, 1 \leq i \leq n \).

Let \(f(t, x, x') \) be continuous on \(\{(t, x, x'): t \in I, \alpha(t) \leq x \leq \beta(t), x' \in \mathbb{R}^n\} \) where \(\alpha, \beta: I \to \mathbb{R}^n \), \(\alpha(t) < \beta(t) \) are twice continuously differentiable with

\[
\alpha(0) = \beta(0) = \alpha'(1), \quad \alpha'(0) \leq \alpha'(1), \quad \beta(0) \leq \beta'(1).
\]

Assume also that \(\alpha, \beta \) are strict lower, upper solutions of (1), i.e.,

\[
\alpha''(t) > f(t, x_1, \ldots, x_{i-1}, \alpha_i(t), x_{i+1}, \ldots, x_n, x'_i), \quad x'_{i-1}, x'_i(t), x'_{i+1}, \ldots, x_n, x'_i,
\]

\[
\beta''(t) < f(t, x_1, \ldots, x_{i-1}, \beta_i(t), x_{i+1}, \ldots, x_n, x'_i), \quad x'_{i-1}, \beta'_i(t), x'_{i+1}, \ldots, x_n.
\]
and

\(\alpha_i''(t) > \alpha_i(t), \quad \beta_i''(t) < \beta_i(t) \)

for \(\alpha_i(t) \leq x_j \leq \beta_j(t), \ j \neq i, \ i = 1, \ldots, n. \)

We now can state our final result.

Theorem 4.3. If \(f \) is continuous on \(\{ (t, x, x') : t \in I, \ \alpha(t) \leq x \leq \beta(t), \ x' \in \mathbb{R}^n \} \) where \(\alpha, \beta \) are strict periodic lower, upper solutions of (1) satisfying (19), (20), and (21), and if there exists \(S > 0 \) such that for any \(\lambda \in [0, 1] \) any solution \(x(t) \) of (12)-(2) with \(\alpha(t) \leq x(t) \leq \beta(t) \) on \(I \) satisfies \(\| x'(t) \| < S \) then PBVP (1)-(2) has a solution \(x(t) \) with \(\alpha(t) < x(t) < \beta(t) \).

The proof is similar to those previously given and is for this reason omitted. By a proper modification of \(f(t, x, x') \), condition (21) can be dropped and equality can be permitted in (20). With that observation, we have a generalization of Theorem 4.1 in [1].

References

Department of Mathematics, University of Colorado, Boulder, Colorado 80302