THE VOLUME OF A REGION DEFINED BY POLYNOMIAL INEQUALITIES

O. S. ROTAUS

Abstract. Let $P(x)$ be a polynomial on \mathbb{R}^n with nonnegative coefficients. We develop a simple necessary and sufficient condition that the set $S=\{x \in \mathbb{R}^n | x_i \geq 0, P(x) \leq 1\}$ shall have finite volume. A corresponding result where $P(x)$ is replaced by a collection of polynomials is an easy corollary. Finally, the necessary and sufficient conditions for the special case that P is a product of linear forms is also given.

Let $P(x)$ be a polynomial on \mathbb{R}^n with nonnegative coefficients, and without constant term (to avoid trivial complications).

$$P(x) = \sum_{r=1}^{k} r_v x_1^{c_v(1)} x_2^{c_v(2)} \cdots x_n^{c_v(n)}, \quad r_v > 0.$$

The vectors $c_v = (c_v(1), c_v(2), \cdots, c_v(n))$ are called the exponents of P. Let C be the closed convex cone in \mathbb{R}^n generated by the c_v, i.e., the elements of C are all linear combinations $p_1 c_1 + p_2 c_2 + \cdots + p_k c_k$ with $p_i \geq 0$. Let $\langle \cdot, \cdot \rangle$ be the usual inner product in \mathbb{R}^n, and let C^* be the dual cone to C with respect to this scalar product; i.e., C^* is the set of $y \in \mathbb{R}^n$ such that $\langle y, x \rangle \geq 0 \ \forall x \in C$. Note that C^* contains the first 2^n-gant in \mathbb{R}^n, so C^* has nonempty interior.

There are several well-known features of the above situation, which it is easy to establish using separation properties of convex sets. Thus if b is not an interior point of C, there exists $d \in C^*$, $d \neq 0$, such that $\langle d, b \rangle \leq 0$. While if $b \neq 0$ is an interior point of C, then there exists a positive constant p such that $\langle d, b \rangle \geq p \langle d, d \rangle^{1/2} \ \forall d \in C^*$, as an easy compactness argument shows. Then we have

Theorem 1. The set $S=\{x | x_i \geq 0, P(x) \leq 1\}$ is of finite volume if and only if the vector $m=(1, 1, \cdots, 1)$ is an interior point of C. (In particular, C must have a nonempty interior.)
Proof. \((S \) is convex, but we do not need this fact.\)

\[
\text{Vol } S = \int_{x, x^T P(x) \leq 1} dx = \int_{P(e^{-u}) \leq 1} e^{-\langle m, u \rangle} \, du.
\]

Now pick a vector \(y \) such that \(\langle e_v, y \rangle \geq \log kr_e \). Then if \(u \in C^* + y \),

\[
P(e^{-u}) = \sum_{v=1}^{k} r_v e^{-\langle e_v, u \rangle} \leq \sum_{v} r_v \frac{1}{kr_v} = 1.
\]

So \(\{ u \in \mathbb{R}^n | P(e^{-u}) \leq 1 \} \subset C^* + y \).

Also pick a vector \(w \) such that \(\langle e_v, w \rangle \leq \log r_v \). Then if \(P(e^{-u}) \leq 1 \), we must have \(r_v e^{-\langle e_v, u \rangle} \leq 1 \), which implies that \(\langle e_v, u \rangle \geq \log r_v \), which implies that \(\langle e_v, u - w \rangle \geq 0 \), i.e., \(u \in w + C^* \).

Thus the set \(\{ u \in \mathbb{R}^n | P(e^{-u}) \leq 1 \} \) is contained in some translate of \(C^* \), and contains a second translate. It follows that \(\text{Vol } S \) is finite if and only if \(\int_{C^*} e^{-\langle m, u \rangle} \, du \) is finite. But if \(m \) is an interior point of \(C \), then \(\langle m, u \rangle \geq p \langle u, u \rangle^{1/2} \) for \(u \in C^* \), and the integral is obviously finite. While if \(m \) is not an interior point, it is easy to see that the above integral diverges, completing the proof.

Corollary. Let \(P_1, P_2, \cdots, P_r \) be polynomials on \(\mathbb{R}^n \) with nonnegative coefficients. The set

\[
S = \{ x \mid x_i \geq 0, P_1(x) \leq 1, P_2(x) \leq 1, \cdots, P_r(x) \leq 1 \}
\]

is of finite volume if and only if \(m = (1, 1, \cdots, 1) \) is an interior point of the cone generated by the exponents of all the polynomials \(P_i \).

For if \(x \in S \), then \(r^{-1}P_1(x) + r^{-1}P_2(x) + \cdots + r^{-1}P_r(x) \leq 1 \), while if \(P_1(x) + P_2(x) + \cdots + P_r(x) \leq 1 \), \(x \in S \).

Next, we apply the above theorem to the case when \(P(x) \) is a product of linear forms on \(\mathbb{R}^n \).

\[
P(x) = \prod_{i=1}^{k} (a_{v(1)}x_1 + a_{v(2)}x_2 + \cdots + a_{v(n)}x_n),
\]

each linear form having nonnegative coefficients not all zero. Let \(U \) be a subset of \(\{ 1, 2, \cdots, n \} \). We say that the support of the linear form \(a_1x_1 + a_2x_2 + \cdots + a_nx_n \) is \(U \) if \(a_i \neq 0 \) for \(i \in U \), and \(a_i = 0 \) for \(i \notin U \). For any subset \(U \), let \(N(U) \) be the number of linear forms in product for \(P(x) \) whose support is contained in \(U \). Then we have:

Theorem 2. \(\text{Vol } S \) is finite if and only if for every proper subset \(U \), we have \(N(U)/\text{card } U < k/n \).
To prove the "if" part, let $u=(u_1, u_2, \cdots, u_n) \in C^*$, and suppose without loss of generality that $u_1 \geq u_2 \geq \cdots \geq u_n$. For $1 \leq r \leq n$, put $N_r = N(\{1, 2, \cdots, r\})$. Then the vector $c = (N_1, N_2 - N_1, N_3 - N_2, \cdots, N_n - N_{n-1})$ is an exponent of P.

Hence

$$\langle c, u \rangle = N_1(u_1 - u_2) + N_2(u_2 - u_3) + \cdots + N_{n-1}(u_{n-1} - u_n) + k u_n \leq (k/n)(u_1 + u_2 + \cdots + u_n)$$

with equality if and only if $u_1 = u_2 = \cdots = u_n$. Since $\langle c, u \rangle \geq 0$, we obtain $\langle m, u \rangle > 0$ if the components of u are not all equal. While if the components of u are all equal and not all zero, then since $u \in C^*$, the components of u are all positive, and again $\langle m, u \rangle > 0$. This proves that m is an interior point of C, and completes the proof of "if".

For the "only if" part, suppose that, for $U = \{1, 2, \cdots, r\}$, $N(U)/r \leq k/n$. We will show m cannot be an interior part of C. Consider the vector u whose first r components are equal to $n-r$, and whose remaining $n-r$ components are equal to $-r$. For any exponent $c = (c_1, c_2, \cdots, c_n)$, we have

$$\langle c, u \rangle = (c_1 + c_2 + \cdots + c_r)(n-r) - (c_{r+1} + \cdots + c_r)r = (c_1 + c_2 + \cdots + c_r)n - kr.$$

As c runs through all exponents of P, $\langle c, u \rangle$ will be minimum when $c_1 + c_2 + \cdots + c_r$ is as small as possible, i.e., when $c_1 + c_2 + \cdots + c_r = N(U)$. Since $N(U) \geq kr/n$, we have always $\langle c, u \rangle \geq 0$ for any exponent c. Hence $u \in C^*$; but $\langle m, u \rangle = 0$ and this proves m is not an interior point of C, and completes the proof.

Department of Mathematics, Cornell University, Ithaca, New York 14850

Department of Mathematics, The Hebrew University, Jerusalem, Israel