Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

A countably distributive complete Boolean algebra not uncountably representable


Author: John Gregory
Journal: Proc. Amer. Math. Soc. 42 (1974), 42-46
MSC: Primary 06A40
MathSciNet review: 0332606
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: It is proved from the Continuum Hypothesis that there exists an $ \omega $-distributive complete Boolean algebra which is not $ {\omega _1}$-representable.


References [Enhancements On Off] (What's this?)

  • [1] Carol Karp, Nonaxiomatizability results for infinitary systems, J. Symbolic Logic 32 (1967), 367–384. MR 0219401
  • [2] Roman Sikorski, Boolean algebras, Second edition. Ergebnisse der Mathematik und ihrer Grenzgebiete, NeueFolge, Band 25, Academic Press Inc., New York; Springer-Verlag, Berlin-New York, 1964. MR 0177920
  • [3] Edgar C. Smith Jr., A distributivity condition for Boolean algebras, Ann. of Math. (2) 64 (1956), 551–561. MR 0086047

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 06A40

Retrieve articles in all journals with MSC: 06A40


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9939-1974-0332606-7
Keywords: Complete Boolean algebra, $ \omega $-distributive Boolean algebra, $ {\omega _1}$-representable Boolean algebra, Continuum Hypothesis
Article copyright: © Copyright 1974 American Mathematical Society