Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

Higher derivations on finitely generated integral domains


Author: W. C. Brown
Journal: Proc. Amer. Math. Soc. 42 (1974), 23-27
MSC: Primary 13B10
MathSciNet review: 0337923
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, we prove the following theorem: Let $ A = k[{x_1}, \cdots ,{x_t}]$ be a finitely generated integral domain over a field k of characteristic zero. Then A regular, i.e. the local ring $ {A_q}$ is regular for all primes $ q \subseteq A$, is equivalent to the following two conditions: (1) No nonminimal prime of A is differential, and (2) $ \operatorname{der}^n (A/k) = \mathrm{Der}^n (A/k)$ for all n. Here $ \operatorname{Der}^n (A/k)$ denotes the A-module of all nth order derivations of A into A which are zero or k, and $ \operatorname{der}^n(A/k)$ denotes the A-submodule of $ \operatorname{Der}^n(A/k)$ generated by composites $ {\delta _1} \circ \cdots \circ {\delta _j}(1 \leqq j \leqq n)$ of first order derivations $ {\delta _i}$.


References [Enhancements On Off] (What's this?)

  • [1] N. Bourbaki, Eléments de mathématique. Fasc. XXVII. Algèbre commutative. Chap. 1: Modules plats. Chap. 2: Localisation, Actualités Sci. Indust., no. 1290, Hermann, Paris, 1961. MR 36 #146.
  • [2] A. Grothendieck, Eléments de géométrie algébrique, Inst. Hautes Études Sci. Publ. Math. Nos. 4-32 (1960-67). MR 29 #1210; 30 #3885; 33 #7330; 36 #177a,b,c; 36 #178; 39 #220.
  • [3] Joseph Lipman, Free derivation modules on algebraic varieties, Amer. J. Math. 87 (1965), 874–898. MR 0186672
  • [4] Kenneth R. Mount and O. E. Villamayor, On a conjecture of Y. Nakai, Osaka J. Math. 10 (1973), 325–327. MR 0327731
  • [5] Yoshikazu Nakai, On the theory of differentials in commutative rings, J. Math. Soc. Japan 13 (1961), 63–84. MR 0125131
  • [6] Yoshikazu Nakai, High order derivations. I, Osaka J. Math. 7 (1970), 1–27. MR 0263804
  • [7] A. Seidenberg, Derivations and integral closure, Pacific J. Math. 16 (1966), 167–173. MR 0188247
  • [8] A. Seidenberg, Differential ideals in rings of finitely generated type, Amer. J. Math. 89 (1967), 22–42. MR 0212027
  • [9] Oscar Zariski and Pierre Samuel, Commutative algebra. Vol. II, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N. J.-Toronto-London-New York, 1960. MR 0120249

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 13B10

Retrieve articles in all journals with MSC: 13B10


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9939-1974-0337923-2
Keywords: nth order derivation, $ \operatorname{der}^n(A/k)$
Article copyright: © Copyright 1974 American Mathematical Society