Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Borel measurability in linear algebra


Author: Edward A. Azoff
Journal: Proc. Amer. Math. Soc. 42 (1974), 346-350
MSC: Primary 15A60; Secondary 47C05
DOI: https://doi.org/10.1090/S0002-9939-1974-0327799-1
MathSciNet review: 0327799
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: It is shown that the usual processes of linear algebra (e.g., finding Jordan forms, eigenvalues, and eigenvectors) can be carried out in a Borel measurable fashion. These results follow easily from a variant of von Neumann's principle of measurable choice and can be applied to the study of Type $ {{\text{I}}_n}$ von Neumann algebras.


References [Enhancements On Off] (What's this?)

  • [1] N. Bourbaki, Eléments de mathématique. I: Les structures fondamentales de l'analyse. Fasc. VIII. Livre III: Topologie générale. Chap. 9: Utilisation des nombres réels en topologie générale, 2nd ed., Actualités Sci. Indust., no. 1045, Hermann, Paris, 1958; English transl., Hermann, Paris; Addison-Wesley, Reading, Mass., 1966. MR 30 #3439; 34 #5044b. MR 0173226 (30:3439)
  • [2] J. T. Schwartz, $ {W^\ast}$-algebras, Gordon and Breach, New York, 1967. MR 38 #547. MR 0232221 (38:547)
  • [3] D. Deckard and C. Pearcy, On continuous matrix-valued functions on a Stonian space, Pacific J. Math. 14 (1964), 857-869. MR 30 #2356. MR 0172130 (30:2356)
  • [4] -, On matrices over the ring of continuous complex-valued functions on a Stonian space, Proc. Amer. Math. Soc. 14 (1963), 322-328. MR 26 #5438. MR 0147926 (26:5438)
  • [5] N. Dunford, A spectral theory for certain operators on a direct sum of Hilbert spaces, Math. Ann. 162 (1965/66), 294-330. MR 32 #8182. MR 0190772 (32:8182)
  • [6] H. Gonshor, Spectral theory for a class of non-normal operators, Canad. J. Math. 8 (1956), 449-461. MR 18, 915. MR 0084746 (18:915a)
  • [7] T. Hoover, Hyperinvariant subspaces for n-normal operators, Acta. Sci. Math. (Szeged) 32 (1971), 109-119. MR 0308816 (46:7930)
  • [8] H. Radjavi and P. Rosenthal, Hyperinvariant subspaces for spectral and n-normal operators, Acta. Sci. Math. (Szeged) 32 (1971), 121-125. MR 0308817 (46:7931)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 15A60, 47C05

Retrieve articles in all journals with MSC: 15A60, 47C05


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1974-0327799-1
Keywords: Borel function, linear algebraic process, principle of measurable choice, continuous matrix valued function on a Stonian space
Article copyright: © Copyright 1974 American Mathematical Society

American Mathematical Society