Invariant Traces on Algebras

Guido Karrer

Abstract. Certain properties of traces on a finite-dimensional associative algebra \(A \) lead to the definition of an element \(t(A) \in H^1(\text{Out } A, C^*) \), \(C^* \) being the multiplicative group of the center of \(A \) as \(\text{Out } A \)-module. It is shown that \(t(A) = 0 \) is equivalent to the existence of nondegenerate traces on \(A \) which are invariant under composition with all automorphisms of \(A \). In particular, by means of Galois theory, \(t(A) = 0 \) is shown for a semisimple algebra \(A \), whereas \(t(A) \neq 0 \) for certain group algebras.

1. Let \(R \) be a field, \(A \) an associative unitary algebra of finite dimension over \(R \). By a trace on \(A \) we mean a linear map \(\tau: A \rightarrow R \) such that \(\tau(ab) = \tau(ba) \) \(\forall a, b \in A \). This is one possible generalization of the notion of a trace on matrix rings (see [4]; for a generalization in another context, see [2]).

In §§2–4 we shall list some generalities on traces; let \(T(A) \) be the \(R \)-vectorspace of all traces on \(A \).

2. The existence of nonzero traces on \(A \) depends on the abelianized algebra \(A^a \). Let \([A, A] \) be the vectorspace generated by all commutators \([a, b] = ab - ba \) in \(A \), \(A^a \) the quotient \(A/[A, A] \). The class map \(\pi: A \rightarrow A^a \) provides an isomorphism of vectorspaces

\[\pi^*: \text{Hom}_R(A^a, R) \rightarrow T(A), \]

where \(\pi^* \) is the dual map of \(\pi \).

One knows that \(A^a \neq (0) \) if \(A \) is simple [1], hence

\[(2.1) \quad T(A) \neq (0) \quad \text{for a simple algebra } A. \]

3. The radical of a trace \(\tau \) is the set

\[R_\tau = \{ a \in A / \tau(ab) = 0 \ \forall b \in A \}, \]

Received by the editors February 12, 1973 and, in revised form, May 17, 1973.

Key words and phrases. Trace on algebras, semisimple algebra, group algebra, cohomology of groups, automorphism of a group algebra.

© American Mathematical Society 1974
and τ is nondegenerate if $R_\tau = (0)$. As R_τ is a 2-sided ideal,

\[(3.1) \quad \text{a nonzero trace on a simple algebra is nondegenerate.}\]

$T(A)$ is a module over the center C of A, as $z \cdot \tau$ for $z \in C$ and $\tau \in T(A)$ defined by

\[(3.2) \quad (z \cdot \tau)(a) := \tau(za), \quad a \in A,
\]

is again a trace.

Proposition 1. A nondegenerate trace $\eta \in T(A)$ is a free generator of the C-module $T(A)$.

Proof. η provides a linear isomorphism from A to its dual $\text{Hom}_R(A, R)$; for every $\tau \in T(A) \subset \text{Hom}_R(A, R)$ there exists a unique $b \in A$ such that $\tau(a) = \eta(ba) \forall a \in A$. We then have the following sequence of implications

\[
\begin{align*}
\tau(a_1a_2) &= \tau(a_2a_1) \quad \forall a_i \in A \\
\Rightarrow \quad \eta(ba_1a_2) &= \eta(ba_2a_1) = \eta(a_1ba_2) \quad \forall a_i \in A \\
\Rightarrow \quad ba_1 - a_1b &\in R\eta = (0) \quad \forall a_1 \in A \\
\Rightarrow \quad b &\in C \Rightarrow \tau = b \cdot \eta.
\end{align*}
\]

Corollary 1. Suppose the set $B(A)$ of nondegenerate traces on A is nonempty. Then, the C-module structure of $T(A)$ defines a simply transitive action of C^\times on $B(A)$, where C^\times is the multiplicative group of invertible elements of the center C of A.

4. Let $\text{Aut} A, \text{In} A$ denote the group of all automorphisms and anti-automorphisms, of all inner automorphisms resp. of A, and denote the quotient group $\text{Aut} A/\text{In} A$ by $\text{Out} A$. As can be seen immediately from the definitions, composing an (anti-) automorphism with a trace yields again a trace and thus an operation of $\text{Aut} A$ on $T(A)$. Inner automorphisms act in this way as the identity, and we finally get an action of $\text{Out} A$ on $T(A)$. Let $\tau \cdot \omega$ ($\tau \in T(A), \omega \in \text{Out} A$) be the symbol for this action. Its relationship with the C-module structure of $T(A)$ may be described in the form of an associative law

\[(4.1) \quad (\omega c) \cdot (\tau \cdot \omega^{-1}) = (c \cdot \tau) \cdot \omega^{-1}, \quad c \in C, \tau \in T(A), \omega \in \text{Out} A.
\]

5. We say that a trace τ is invariant if $\tau \cdot \omega = \tau \forall \omega \in \text{Out} A$. We are coming now to the main point of this note which consists in giving a condition on the cohomology level for the existence of nondegenerate invariant traces.

In the subsequent statement, C^\times is meant to be an $\text{Out} A$-module via the operation of automorphisms on the center.
Proposition 2. For every algebra A with $B(A) \neq \emptyset$, there is defined an element $t(A) \in H^1(\text{Out } A, C^*)$ such that $t(A) = 0$ precisely if A has nondegenerate invariant traces.

Proof. By Corollary 1, there belongs to every $\tau \in B(A)$ a map $f_\tau : \text{Out } A \to C^*$ such that
\begin{equation}
(5.1) \quad \tau \cdot \omega^{-1} = f_\tau(\omega) \cdot \tau \quad \forall \omega \in \text{Out } A.
\end{equation}
Then, the following statements are immediate consequences of (4.1):

(1) f_τ is a crossed homomorphism.
(2) For τ and $\eta \in B(A)$, f_τ and f_η differ by a principal crossed homomorphism.

If $t(A)$ is then defined as the cohomology class of the f_τ's the statement in Proposition 2 on $t(A)$ is easily verified using again (4.1).

6. Example 1. $t(A) = 0$ for a semisimple algebra A. In fact, if A is simple we know from (2.1) and (3.1) that $B(A) \neq \emptyset$. As Out A is a finite group and C^* the multiplicative group of a field, a fundamental theorem of Galois theory asserts that $H^1(\text{Out } A, C^*) = 0$ [3, Chapter IV, p. 106]. By Proposition 2, A has nondegenerate invariant traces.

If $A = \bigoplus A_i$ ($1 \leq i \leq n$) is semisimple with simple components A_i, let
\begin{equation}
\text{Out } A := \{ \omega \in \text{Out } A / \omega(A_i) \subset A_i \}.
\end{equation}
Choose one index i for each conjugacy class of the subgroups $\text{Out } i A \subset \text{Out } A$, and on A_i a nondegenerate invariant trace τ_i. If $\text{Out } i A$ is conjugate to $\text{Out } j A$, there exists $\alpha \in \text{Aut } A$ with $\alpha : A_k \to A_i$, and define τ_k on A_k by $\tau_k = \tau_i \circ \alpha$. The direct sum of all these traces on the different A_i is seen to be a nondegenerate invariant trace on A.

7. Example 2. Let G_p be a finite cyclic group of prime order $p > 2$, $R = \mathbb{Z}_p$ and A the group algebra $\mathbb{Z}_p(G_p)$. Then, $t(A) \neq 0$.

First we note, that in the more general situation of a finite group G and field R, the group algebra $R(G)$ has at least one nondegenerate trace τ_0 given by $\tau_0(x) = x(1)$ where $x = \sum x(g) \cdot g \in R(G)$, $g \in G$ and $x(g) \in R$, and 1 is the unit in G. Hence, $t(R(G))$ is defined.

Suppose now q is a generator of G_p. As $A = \mathbb{Z}_p(G_p)$ is commutative, we have $\text{Out } A = \text{Aut } A$ and every $\alpha \in \text{Aut } A$ is characterized by its value on q. If $x = \alpha(q)$, $x^p = 1$ and the powers x^r for $1 \leq r \leq p - 1$, form an R-basis of A. Conversely, every $x \in A$ with this property is the value of some $\alpha \in \text{Aut } A$ on q. Therefore at least p automorphisms α_v, $0 \leq v \leq p - 1$, of A exist which are given by their values on q: $\alpha_v(q) = q^r$, $1 \leq r \leq p - 1$, $\alpha_0(q) = \frac{1}{2}(1 + q)$.
From this we conclude that an invariant trace τ on $A = \mathbb{Z}_p(G_p)$ must assume the same value on each q^r, $0 \leq r \leq p - 1$, and as such must be a multiple of the augmentation $\varepsilon: \mathbb{Z}_p(G_p) \rightarrow \mathbb{Z}_p$. The kernel of ε being an ideal, ε is a degenerate trace and so is τ.

References

Department of Mathematics, University of Zurich, Zurich, Switzerland