A NOTE ON MONOMIALS IN SEVERAL COMPLEX VARIABLES

G. G. WEILL

Abstract. Monomials in \(C^n \) are characterized in the polydisk algebra \(A(U^n) \) as functions whose modulus is constant on the distinguished boundary of \(U^n \) and whose zero set has an intersection with the diagonal of \(U^n \) consisting (at most) of the origin.

The note answers a question raised by F. Norguet in his course notes Fonctions de plusieurs variables complexes, Paris, 1971. The following characterization of monomials in the polydisk algebra is a generalization of a result of R. Bojanic and W. Stoll about a characterization of monomials among entire functions [1].

We use the following notations:
- \(U^n \) is the open unit polydisk in \(C^n \).
- \(T^n \) is the distinguished boundary of \(U^n \).
- \(\Delta^n = \{ (\lambda, \cdots, \lambda) \in \overline{U}^n, \lambda \in \overline{U}^1 \} \) is the diagonal of \(\overline{U}^n \).
- \(A(U^n) \) is the algebra of functions analytic in \(U^n \) and continuous in \(\overline{U}^n \).

For \(f \in A(U^n) \) we call \(Z_f \), the zero set of \(f \) in \(\overline{U}^n \).

Theorem. Assume that \(f \in A(U^n) \) satisfies

(i) \(|f(T^n)| = 1 \),
(ii) \(Z_f \cap \Delta^n = \{ (0, \cdots, 0) \} \).

Then \(f = cz_1^{k_1} \cdots z_n^{k_n} \) where \(c \in T^1 \).

Proof. Let \(z \in T^n \). Then \(f_s(\lambda) = f(\lambda z) \) is a finite Blaschke product in \(A(U^1) \) since (i)\(\Rightarrow \) \(f \) is an “inner function” in \(A(U^n) \), hence a rational function [2, p. 112]. Hence \(f_s(\lambda) = c(z)\lambda^{p(z)} \) by (ii), where \(p(z) \) is nonnegative integer valued. For \(\lambda = 1 \), \(f(z) = c(z) \forall z \in T^n \), hence \(f_s(\lambda) = f(z)\lambda^{p(z)} \). This shows that \(p(z) \) is continuous integer valued on \(T^n \) for fixed \(\lambda \in \overline{U}^1 \). Hence \(p(z) = k \), a fixed nonnegative integer since \(T^n \) is connected.

It follows that \(f(\lambda z) = \lambda^k f(z) \forall z \in T^n \) hence also for \(\forall z \in U^n \). As seen from the Taylor expansion of \(f \), \(f \) must be a homogeneous polynomial.
of degree \(k \). (This part of the proof parallels an argument of S. Bochner [3].) Denote by \(k_i \) the degree of \(f \) in \(z_i \) \((i=1, \ldots, n)\). Write \(f(z) = Q_i(z)z_i^{k_i} \) plus terms of lower degree in \(z_i \) where \(Q_i \neq 0 \) is a polynomial that does not involve \(z_i \). There is at least one point of \(T^n \) where all \(Q_i \) are \(\neq 0 \). (If some \(Q_i \) were zero at each point of \(T^n \), then \(\prod_i Q_i \) would be zero on \(T^n \) and hence identically zero on \(U^n \). Hence one of the \(Q_i \)'s would be identically zero—a contradiction.)

Assume such a point is \((1, 1, \ldots, 1)\); now \(f(\lambda, 1, 1, \ldots, 1) \) is a Blaschke product hence it has all its \(k_\lambda \) zeros in \(U^1 \). An easy index computation (see [2, p. 89]) shows that \(f(\lambda, \lambda, \ldots, \lambda) \) has degree \(k_1 + \cdots + k_n \). It follows that \(f \) is a monomial, \(f = c z_1^{k_1} \cdots z_n^{k_n} \) where \(c \in T^1 \).

BIBLIOGRAPHY

DEPARTMENT OF MATHEMATICS, POLYTECHNIC INSTITUTE OF BROOKLYN, BROOKLYN, NEW YORK 11201