Some results on the radial projection in Banach spaces

Author:
R. L. Thele

Journal:
Proc. Amer. Math. Soc. **42** (1974), 483-486

MSC:
Primary 46B05

MathSciNet review:
0328550

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We obtain in this paper some new theorems on the radial projection onto the unit ball in Banach spaces, including in particular the following: A Banach space *X* is uniformly nonsquare if and only if the radial projection in *X* has Lipschitz constant strictly less than 2.

**[1]**D. G. de Figueiredo and L. A. Karlovitz,*On the radial projection in normed spaces*, Bull. Amer. Math. Soc.**73**(1967), 364–368. MR**0211248**, 10.1090/S0002-9904-1967-11753-1**[2]**C. F. Dunkl and K. S. Williams,*Mathematical notes: a simple norm inequality*, Amer. Math. Monthly**71**(1964), no. 1, 53–54. MR**1532478**, 10.2307/2311304**[3]**K. Goebel,*Convexivity of balls and fixed-point theorems for mappings with nonexpansive square*, Compositio Math.**22**(1970), 269–274. MR**0273477****[4]**Robert C. James,*Orthogonality and linear functionals in normed linear spaces*, Trans. Amer. Math. Soc.**61**(1947), 265–292. MR**0021241**, 10.1090/S0002-9947-1947-0021241-4**[5]**Robert C. James,*Uniformly non-square Banach spaces*, Ann. of Math. (2)**80**(1964), 542–550. MR**0173932****[6]**W. A. Kirk and M. F. Smiley,*Mathematical Notes: Another Characterization of Inner Product Spaces*, Amer. Math. Monthly**71**(1964), no. 8, 890–891. MR**1532903**, 10.2307/2312400

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
46B05

Retrieve articles in all journals with MSC: 46B05

Additional Information

DOI:
http://dx.doi.org/10.1090/S0002-9939-1974-0328550-1

Article copyright:
© Copyright 1974
American Mathematical Society