Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

Extreme functionals on an upper semicontinuous function space


Authors: F. Cunningham and Nina M. Roy
Journal: Proc. Amer. Math. Soc. 42 (1974), 461-465
MSC: Primary 46E40
MathSciNet review: 0328579
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A representation theorem is given for the extreme points of the dual ball of a vector valued function space X with upper semicontinuous norm defined on a compact Hausdorff space $ \Omega $. This generalizes the Arens-Kelley theorem which is the case $ X = C(\Omega )$.


References [Enhancements On Off] (What's this?)

  • [1] F. Cunningham Jr., 𝑀-structure in Banach spaces, Proc. Cambridge Philos. Soc. 63 (1967), 613–629. MR 0212544
  • [2] Nelson Dunford and Jacob T. Schwartz, Linear Operators. I. General Theory, With the assistance of W. G. Bade and R. G. Bartle. Pure and Applied Mathematics, Vol. 7, Interscience Publishers, Inc., New York; Interscience Publishers, Ltd., London, 1958. MR 0117523
  • [3] W. J. Ströbele, On the representation of the extremal functionals on $ {C_0}(T,X)$, Notices Amer. Math. Soc. 19 (1972), A-443. Abstract 72T-B119.
  • [4] Albert Wilansky, Functional analysis, Blaisdell Publishing Co. Ginn and Co. New York-Toronto-London, 1964. MR 0170186

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46E40

Retrieve articles in all journals with MSC: 46E40


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9939-1974-0328579-3
Keywords: Extreme functional, uniform norm, function space, upper semicontinuous norm
Article copyright: © Copyright 1974 American Mathematical Society