Multipliers for -algebras with approximate identities

Author:
Charles D. Lahr

Journal:
Proc. Amer. Math. Soc. **42** (1974), 501-506

MSC:
Primary 43A10

DOI:
https://doi.org/10.1090/S0002-9939-1974-0330922-6

MathSciNet review:
0330922

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let *S* be a commutative semigroup with multiplier semigroup . Assume that is semisimple and possesses a bounded approximate identity. If denotes the annihilator of in , then the multiplier algebra of is topologically isomorphic to , and this quotient algebra of is itself an -algebra.

**[1]**W. W. Comfort,*The Šilov boundary induced by a certain Banach algebra*, Trans. Amer. Math. Soc.**98**(1961), 501-517. MR**22**#11282. MR**0120530 (22:11282)****[2]**E. Hewitt and H. S. Zuckerman,*The*-*algebra of a commutative semigroup*, Trans. Amer. Math. Soc.**83**(1956), 70-97. MR**18**, 465. MR**0081908 (18:465b)****[3]**C. D. Lahr,*Approximate identities for convolution measure algebras*, Pacific J. Math.**47**(1973), 147-159. MR**0326395 (48:4739)****[4]**-,*Multipliers for certain convolution measure algebras*, Trans. Amer. Math. Soc. (to appear). MR**0333587 (48:11912)****[5]**C. E. Rickart,*General theory of Banach algebras*, University Series in Higher Math., Van Nostrand, Princeton, N.J., 1960. MR**22**#5903. MR**0115101 (22:5903)****[6]**J. L. Taylor,*The structure of convolution measure algebras*, Trans. Amer. Math. Soc.**119**(1965), 150-166. MR**32**#2932 MR**0185465 (32:2932)****[7]**J. K. Wang,*Multipliers of commutative Banach algebras*, Pacific J. Math.**11**(1961), 1131-1149. MR**25**#1462. MR**0138014 (25:1462)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
43A10

Retrieve articles in all journals with MSC: 43A10

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1974-0330922-6

Keywords:
Convolution measure algebra,
-algebra,
multiplier

Article copyright:
© Copyright 1974
American Mathematical Society