Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Multipliers for $ l\sb{1}$-algebras with approximate identities


Author: Charles D. Lahr
Journal: Proc. Amer. Math. Soc. 42 (1974), 501-506
MSC: Primary 43A10
DOI: https://doi.org/10.1090/S0002-9939-1974-0330922-6
MathSciNet review: 0330922
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let S be a commutative semigroup with multiplier semigroup $ \Omega (S)$. Assume that $ {l_1}(S)$ is semisimple and possesses a bounded approximate identity. If $ {l_1}{(S)^0}$ denotes the annihilator of $ {l_1}(S)$ in $ {l_1}(\Omega (S))$, then the multiplier algebra of $ {l_1}(S)$ is topologically isomorphic to $ {l_1}(\Omega (S))/{l_1}{(S)^0}$, and this quotient algebra of $ {l_1}(\Omega (S))$ is itself an $ {l_1}$-algebra.


References [Enhancements On Off] (What's this?)

  • [1] W. W. Comfort, The Šilov boundary induced by a certain Banach algebra, Trans. Amer. Math. Soc. 98 (1961), 501-517. MR 22 #11282. MR 0120530 (22:11282)
  • [2] E. Hewitt and H. S. Zuckerman, The $ {l_1}$-algebra of a commutative semigroup, Trans. Amer. Math. Soc. 83 (1956), 70-97. MR 18, 465. MR 0081908 (18:465b)
  • [3] C. D. Lahr, Approximate identities for convolution measure algebras, Pacific J. Math. 47 (1973), 147-159. MR 0326395 (48:4739)
  • [4] -, Multipliers for certain convolution measure algebras, Trans. Amer. Math. Soc. (to appear). MR 0333587 (48:11912)
  • [5] C. E. Rickart, General theory of Banach algebras, University Series in Higher Math., Van Nostrand, Princeton, N.J., 1960. MR 22 #5903. MR 0115101 (22:5903)
  • [6] J. L. Taylor, The structure of convolution measure algebras, Trans. Amer. Math. Soc. 119 (1965), 150-166. MR 32 #2932 MR 0185465 (32:2932)
  • [7] J. K. Wang, Multipliers of commutative Banach algebras, Pacific J. Math. 11 (1961), 1131-1149. MR 25 #1462. MR 0138014 (25:1462)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 43A10

Retrieve articles in all journals with MSC: 43A10


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1974-0330922-6
Keywords: Convolution measure algebra, $ {l_1}$-algebra, multiplier
Article copyright: © Copyright 1974 American Mathematical Society

American Mathematical Society