Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A remark on finite dimensional compact connected monoids


Authors: L. W. Anderson and R. P. Hunter
Journal: Proc. Amer. Math. Soc. 42 (1974), 602-606
MSC: Primary 22A15
DOI: https://doi.org/10.1090/S0002-9939-1974-0333061-3
MathSciNet review: 0333061
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let S be a compact n-dimensional monoid. Let A be a compact connected subsemigroup algebraically irreducible from the minimal ideal to the identity of S. Then there exists a closed proper ideal J such that $ \dim \{ A/A \cap J\} \leqq \dim S - \dim {H_1}$.


References [Enhancements On Off] (What's this?)

  • [1] L. W. Anderson and R. P. Hunter, Homomorphisms and dimension, Math. Ann. 147 (1962), 248-268. MR 26 #4324. MR 0146804 (26:4324)
  • [2] -, Sur les demi-groupes compacts et connexes, Fund. Math. 56 (1964), 183-187. MR 30 #2470. MR 0172250 (30:2470)
  • [3] H. Cohen, A cohomological definition of dimension for locally compact Hausdorff spaces, Duke Math. J. 21 (1954), 209-224. MR 16, 609. MR 0066637 (16:609b)
  • [4] J. Day and K. H. Hofmann, Clan acts and codimension, Semigroup Forum 4 (1972), 206-214. MR 0299713 (45:8761)
  • [5] K. H. Hofmann and P. S. Mostert, Elements of compact semigroups, Merrill, Columbus, Ohio, 1966. MR 35 #285. MR 0209387 (35:285)
  • [6] A. D. Wallace, Cohomology, dimension and mobs, Summa Brazil. Math. 3 (1953), 43-55. MR 15, 336. MR 0058206 (15:336f)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 22A15

Retrieve articles in all journals with MSC: 22A15


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1974-0333061-3
Keywords: Semigroup, algebraically irreducible, dimension
Article copyright: © Copyright 1974 American Mathematical Society

American Mathematical Society