\Lambda(p) SETS AND THE EXACT MAJORANT PROPERTY

SAMUEL E. EBENSTEIN

Abstract. Let \(\Gamma \) be a discrete abelian group. We prove that if \(2 < p < \infty \) and \(E \subseteq \Gamma \), then \((E, p)\) has the exact majorant property if and only if \(E \) is a \(\Lambda(p) \) set.

Let \(G \) be a compact abelian group with dual group \(\Gamma \). If \(1 \leq r < \infty \) and \(E \subseteq \Gamma \), let \(L_r^p(G) = \{ f : f \in L^p(G), f(y) = 0, \gamma \notin E \} \). If \(L_r^\infty(G) = L_r^2(G) \) for a set \(E \), we say \(E \) is a \(\Lambda(p) \) set. It follows that if \(L_r^\infty(G) = L_r^2(G) \) for some \(r, 1 \leq r < p \), then \(L_r^p(G) = L_r^\infty(G) = L_r^2(G) \) (cf. \[6, 37.7\]). If \(f, g \in L^p(G) \) and \(\hat{g} = |f| \) we say as in \[5\] that \(g \) is the exact majorant of \(f \). We say \((E, p)\) has the exact majorant property if whenever \(f \in L_r^p(G) \) then \(|f| \in (L_r^p(G))^* \), where \((L_r^p(G))^* = \{ \hat{f} : f \in L_r^p(G) \}\).

If \(p = 2 \) and \(E \subseteq \Gamma \), then \((E, 2)\) always has the exact majorant property since \(L_2^2(G) \) does. The following theorem and remark show that if \(2 < p \leq \infty \) then \((E, p)\) has the exact majorant property only for special sets \(E \).

Theorem. Suppose \(2 < p < \infty \); then \((E, p)\) has the exact majorant property if and only if \(E \) is a \(\Lambda(p) \) set.

Proof. Suppose \(E \) is a \(\Lambda(p) \) set. If \(f \in L_r^p(G) \) then \(f \in L_r^\infty(G) \), since \(L_r^\infty(G) \subseteq L_r^p(G) \) for \(p > 2 \). So \(\hat{f} \in (L_r^\infty(G))^* \) and \(|f| \in (L_r^p(G))^* \). But \(E \) is a \(\Lambda(p) \) set so \(L_r^\infty(G) = L_r^2(G) \) and \(|f| \in (L_r^p(G))^* = (L_r^2(G))^* \).

Conversely suppose \((E, p)\) has the exact majorant property. We wish to show \(L_r^\infty(G) = L_r^2(G) \). But \(L_r^\infty(G) \subseteq L_r^2(G) \), so it is sufficient to show \(L_r^2(G) \subseteq L_r^\infty(G) \).

Suppose \(f \in L_r^\infty(G) \). Define \(f_1 \) and \(f_2 \) in \(L_r^2(G) \) as follows:
\[
\hat{f}_1(\gamma) = \frac{1}{2}(\text{Re}\hat{f}(\gamma) + \text{Re}\hat{f}(\gamma)), \quad \hat{f}_2(\gamma) = \frac{1}{2}(\text{Re}\hat{f}(\gamma) - \text{Re}\hat{f}(\gamma)).
\]
Define \(f_3 \) and \(f_4 \) similarly with \(\text{Re}\hat{f} \) replaced by \(\text{Im}\hat{f} \). Then clearly \(f_1 \in L_r^2(G) \) for \(1 \leq r \leq 4 \) and
\[
f = f_1 - f_2 + i(f_3 - f_4).
\]
Consider \(f_1 \), by \[3, 14.3.2\] or \[6, 36.5\], there exists a choice of numbers \(c_x \) of absolute value \(1 \) such that if
\[
h_1(x) \sim \sum c_x f_1(\gamma)(x, \gamma).
\]

Received by the editors June 8, 1972 and, in revised form, May 14, 1973.
AMS (MOS) subject classifications (1970). Primary 42A44.
Key words and phrases. \(\Lambda(p) \), exact majorant.
then $h_1 \in L_E^p(G)$. But (E, p) has the exact majorant property, so $|h_1| \in L_E^p(G)$.

Similarly $f_j \in L_E^p(G)$ for $2 \leq j \leq 4$. By equation (1), $f \in L_E^p(G)$.

Remarks. This theorem was proved for the special case when p is an even integer >2 by Bachelis [1]. The proof actually gives the following: If p is an even integer >2, then E is a $\Lambda(p)$ set if and only if given $f \in L_E^p(G)$ there exists $g \in L_E^p(G)$ with $|f| \leq |g|$. (See [1, Theorem 3 and Lemma 1], or [2, Theorem 3].) The question of whether or not this characterization is also valid for p not an even integer is open.

It is easy to show that (E, ∞) has the exact majorant property if and only if E is a Sidon set. It is known that a Sidon set is a $\Lambda(p)$ set for all $p < \infty$ [6, 37.10]. A natural question to ask is, if (E, p) has the exact majorant property for all $p < \infty$, does (E, ∞) have the exact majorant property? This question is answered in the negative since every infinite discrete abelian group contains a set E which is $\Lambda(p)$ for all $p < \infty$ but not Sidon [4].

Bibliography

DEPARTMENT OF MATHEMATICS, WAYNE STATE UNIVERSITY, DETROIT, MICHIGAN 48202