A stability theorem for a real analytic singular Cauchy problem
Author:
W. J. Walker
Journal:
Proc. Amer. Math. Soc. 42 (1974), 495500
MSC:
Primary 35M05
MathSciNet review:
0342877
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: In this paper we prove the equation , with initial conditions is well posed provided that and belong to special classes of real analytic functions. In general this problem is not stable for and and real analytic functions.
 [1]
I.
S. Berezin, On Cauchy’s problem for linear equations of the
second order with initial conditions on a parabolic line, Mat. Sbornik
N.S. 24(66) (1949), 301–320 (Russian). MR 0031176
(11,112c)
 [2]
Robert
Carroll, Some degenerate Cauchy problems with operator
coefficients, Pacific J. Math. 13 (1963),
471–485. MR 0163064
(29 #367)
 [3]
R.
W. Carroll and C.
L. Wang, On the degenerate Cauchy problem, Canad. J. Math.
17 (1965), 245–256. MR 0217399
(36 #489)
 [4]
Min’yu
Či, The Cauchy problem for a class of hyperbolic equations
with initial data on a line of parabolic degeneracy, Acta Math. Sinica
8 (1958), 521–530 (Chinese, with Russian summary).
MR
0107088 (21 #5815)
 [5]
A.
B. Nersesjan, On the Cauchy problem for degenerated hyperbolic
equations of second order, Dokl. Akad. Nauk SSSR 166
(1966), 1288–1291 (Russian). MR 0196273
(33 #4465)
 [6]
M.
H. Protter, The Cauchy problem for a hyperbolic second order
equation with data on the parabolic line, Canadian J. Math.
6 (1954), 542–553. MR 0064269
(16,255d)
 [7]
Lucy
Joan Slater, Generalized hypergeometric functions, Cambridge
University Press, Cambridge, 1966. MR 0201688
(34 #1570)
 [8]
S.
A. Tersenov, A problem with data on a line of degeneration for
systems of equations of hyperbolic type, Dokl. Akad. Nauk SSSR
155 (1964), 285–288 (Russian). MR 0164140
(29 #1439)
 [1]
 I. S. Berezin, On Cauchy's problem for linear equations of the second order with initial conditions on a parabolic line, Mat. Sb. 24 (66) (1949), 301320; English transl., Amer. Math. Soc. Transl. (1) 4 (1962), 415439. MR 11, 112. MR 0031176 (11:112c)
 [2]
 R. Carroll, Some degenerate Cauchy problems with operator coefficients, Pacific J. Math. 13 (1963), 471485. MR 29 #367. MR 0163064 (29:367)
 [3]
 R. Carroll and C. Wang, On the degenerate Cauchy problem, Canad. J. Math. 17 (1965), 245256. MR 36 #489. MR 0217399 (36:489)
 [4]
 Chi Minyou, The Cauchy problem for a class of hyperbolic equations with data on a line of parabolic degeneracy, Acta. Math. Sinica 8 (1958), 521529=Chinese Math. 9 (1967), 246254. MR 21 #5815. MR 0107088 (21:5815)
 [5]
 A. B. Nersesjan, The Cauchy problem for degenerating hyperbolic equations of second order, Dokl. Akad. Nauk SSSR 166 (1966), 12881291=Soviet Math. Dokl. 7 (1966), 278281. MR 33 #4465. MR 0196273 (33:4465)
 [6]
 M. H. Protter, The Cauchy problem for a hyperbolic second order equation with data on the parabolic line, Canad. J. Math. 6 (1954), 542553. MR 16, 255. MR 0064269 (16:255d)
 [7]
 L. J. Slater, Generalized hypergeometric functions, Cambridge Univ. Press, Cambridge, 1966. MR 34 #1570. MR 0201688 (34:1570)
 [8]
 S. A. Tersenov, A problem with data given on a line of degeneracy for a system of hyperbolic equations, Dokl. Akad. Nauk SSSR 155 (1964), 285288=Soviet Math. Dokl. 5 (1964), 409413. MR 29 #1439. MR 0164140 (29:1439)
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC:
35M05
Retrieve articles in all journals
with MSC:
35M05
Additional Information
DOI:
http://dx.doi.org/10.1090/S00029939197403428779
PII:
S 00029939(1974)03428779
Article copyright:
© Copyright 1974
American Mathematical Society
