Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



A characterization of $ 1-1$ matrices

Author: L. W. Baric
Journal: Proc. Amer. Math. Soc. 42 (1974), 517-522
MSC: Primary 40J05
MathSciNet review: 0342902
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Another proof is given of a known characterization of infinite matrices that preserve absolutely summable sequences where the entries of the matrices are continuous linear functions from a Fréchet space into a Fréchet space. In addition, another characterization is obtained using the adjoint matrix.

References [Enhancements On Off] (What's this?)

  • [1] L. W. Baric, The chi function in generalized summability, Studia Math. 39 (1971), 165-180. MR 0308652 (46:7766)
  • [2] J. L. Kelley, I. Namioka et al., Linear topological spaces, Van Nostrand, Princeton, N.J., 1963. MR 0166578 (29:3851)
  • [3] H. H. Schaefer, Topological vector spaces, Macmillan, New York, 1966. MR 33 #1689. MR 0193469 (33:1689)
  • [4] F. Treves, Topological vector spaces, distributions and kernels, Academic Press, New York, 1967. MR 37 #726. MR 0225131 (37:726)
  • [5] B. Wood, On l-l summability, Proc. Amer. Math. Soc. 25 (1970), 433-436. MR 41 #684. MR 0256024 (41:684)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 40J05

Retrieve articles in all journals with MSC: 40J05

Additional Information

Article copyright: © Copyright 1974 American Mathematical Society

American Mathematical Society