ON THE FIRST COHOMOLOGY GROUP OF DISCRETE GROUPS WITH PROPERTY (T)

S. P. WANG

Abstract. Let G be a separable locally compact group with property (T), i.e., the class of one dimensional trivial representations is an isolated point in the dual space \hat{G} of G. Let $\pi: G \to O_n$ be a continuous representation of G into the orthogonal group. In this note, we show that $H^1(G, \pi) = 0$.

Let G be a separable locally compact group. Let \hat{G} be the set of all equivalence classes of separable irreducible unitary representations of G. We give \hat{G} the inner-hull-kernel topology. \hat{G} is called the dual space of G. Following [4], G is said to have property (T) if the equivalence class I of the one dimensional trivial representation of G is an isolated point in \hat{G}. Let $\pi: G \to O_n$ be a continuous representation of G into the group of all n by n orthogonal matrices. Let us write $C^1(G, \pi)$ and $B^1(G, \pi)$ for the groups of continuous 1-cocycles and 1-coboundaries respectively. Let $H^1(G, \pi) = C^1(G, \pi)/B^1(G, \pi)$. In this note, we are going to prove that $H^1(G, \pi) = 0$ if G is a separable locally compact group with property (T). Applying to discrete subgroups of p-adic groups or real Lie groups, our result generalizes slightly some results in [4] and [3, Theorem 6.5]. Our argument still follows the spirit of [4]. Before we give the proof of the main result, we shall first establish some lemmas needed later.

Lemma 1. Let H be a locally compact group and $\pi: H \to O_n$ a representation. Let $\varphi: H \to R^n$ be a 1-cocycle. If $\varphi(H)$ is bounded in R^n, then φ is a coboundary.

Proof. Let K be the closure of $\pi(H)$ in O_n and $K \cdot R^n$ the semidirect product of K and R^n where R^n is the normal subgroup and K acts on R^n in the natural manner. Consider then the map $f: H \to K \cdot R^n$ defined by $h \mapsto \pi(h)\varphi(h)$ ($h \in H$). Since φ is a 1-cocycle, f clearly is a homomorphism. $\varphi(H)$ is bounded by assumption. It yields that $\text{Cl}(f(H))$ is compact.

Received by the editors January 30, 1973.

Key words and phrases. Locally compact groups, groups with property (T), affine semisimple algebraic groups.

1 Partially supported by NSF Grant GP-29466X.
By the conjugacy theorem, there is \(m \) in \(\mathbb{R}^n \) such that \(m \mathrm{Cl}(f(H))m^{-1} \subset K \). In particular, we have

\[
m \pi(h) \varphi(h)m^{-1} = \pi(h)(m^h \varphi(h)m^{-1}) \in K,
\]

where \(m^h = \pi(h)^{-1}m\pi(h) \) and \(h \in H \). Hence \(m^h \varphi(h)m^{-1} = 1 \) and in additive notation, we get \(\varphi(h) = m - m^h, h \in H \). Therefore \(\varphi \) is a coboundary.

Lemma 2. Let \(G \) be a separable locally compact group with property (T). Then there exists a positive number \(\varepsilon \) and a compact subset \(K \) of \(G \) with the following condition: If \(\pi \) is a separable unitary representation of \(G \) on a Hilbert space \(H(\pi) \) and \(x \in H(\pi) \) such that \(\|x\| = 1 \) and \(\|gx, x\| - 1 < \varepsilon \) for all \(g \in K \), then \(\pi \leq I \).

Proof. Suppose the assertion to be false. Let \(K_n \) be an increasing sequence of compact subsets of \(G \) such that \(\bigcup_n K_n = G \). Then there are separable unitary representations of \(G, \pi_1, \pi_2, \ldots \) for which there exist \(x_n \in H(\pi_n) \) with \(\|x_n\| = 1 \), \(\|hx_n, x_n\| - 1 < 1/n \) for \(g \in K_n \) and \(\pi_n \not\leq I \) \((n = 1, 2, \ldots)\). Then consider the representation \(\pi = \bigoplus_{n=1}^{\infty} \pi_n \). Due to our construction, \(I \) is contained in the closure of \(\{\pi\} \). However \(G \) has property (T), by [4], [6], \(I \leq \pi \) which implies \(I \leq \pi_n \) for some \(n \). Obviously this is a contradiction.

Lemma 3. Let \(G, \varepsilon, K \) be described as in Lemma 2. Let \(\pi \) be a separable unitary representation of \(G \) in the Hilbert space \(H(\pi) \). If \(x \in H(\pi) \) with \(\|x\| = 1 \) and \(\|gx, x\| - 1 < \varepsilon \) for \(g \in K \), then \(\|gx - x\| < 2\sqrt{\varepsilon} \) for all \(g \in G \).

Proof. Let us write \(H_1 \) for the set \(\{y \in H(\pi):gy = y \text{ for all } g \in G\} \) and \(H_2 = H_1^\perp \). Clearly, \(H_2 \) is invariant under \(G \), and \(H(\pi) = H_1 \oplus H_2 \). It is also easy to see that \(\pi|_{H_1} \leq I \). Let us write \(x = x_1 + x_2 \) with \(x_1 \in H_1 \) and \(x_2 \in H_2 \). Since \(gx = x_1 + gx_2 \) and \(\|x\| = 1 \),

\[
\|gx - x\| = \|gx_2 - x_2\| < 2\sqrt{\varepsilon} \quad \text{for } g \in K.
\]

Since \(\pi|_{H_2} \not\leq I \) and by Lemma 2, we must have \(\|x_2\| < \varepsilon \). From this, \(\|gx - x\| = \|gx_2 - x_2\| < 2\sqrt{\varepsilon} \), for all \(g \in G \).

Lemma 4. Let \(G \) be a separable locally compact group with property (T), \(\pi: G \to O_n \) a continuous homomorphism and \(\varphi: G \to \mathbb{R}^n \) a continuous 1-cocycle. Then \(\varphi(G) \) is bounded in \(\mathbb{R}^n \).

Proof. Let \(\varphi: G \to \mathbb{R}^n \) be a continuous 1-cocycle. We define \(\alpha_\lambda: G \to G \cdot \mathbb{R}^n \) (semidirect product) by \(g \mapsto g(\lambda \varphi(g)) \) \((g \in G)\). Clearly the maps

\footnote{Let \(\mathcal{G} \) be the set of all equivalence classes of separable unitary representations of \(G \). We give \(\mathcal{G} \) the inner hull-kernel topology.}
\(\alpha \) (0 \leq \lambda \leq 1) are continuous homomorphisms and, as \(\lambda \to 0 \), \(\alpha_{\lambda} \to \) the inclusion map \(i_{G} \) of \(G \) in \(G \cdot R^{n} \). Now consider the space \(L^{2}(G \cdot R^{n}) = L^{2}(R^{n}) \). Through right translations, \(G \cdot R^{n} \) acts unitarily on \(L^{2}(G \cdot R^{n}) \). Let \(B \) be a unit volume ball in \(R^{n} \) with center at 0, and \(x_{B} \) the characteristic function on \(B \). Since \(B \) is invariant under \(O_{n} \), \(gx_{B} = x_{B} \) for all \(g \in G \). Now let \(\varepsilon < \frac{1}{2} \), and \(G, K \) be described as in Lemma 2. Since \(\alpha_{\lambda} \to i_{G} \) as \(\lambda \to 0 \), there is \(\delta > 0 \) such that

\[|(\alpha_{\lambda}(g)x_{B}, x_{B}) - 1| < \varepsilon^{2}, \quad g \in K, \]

and \(0 \leq \lambda \leq \delta \). By Lemma 3, \(\|\alpha_{\lambda}(g)x_{B} - x_{B}\| < 2\sqrt{\varepsilon} \) for all \(g \in G \) and \(0 \leq \lambda \leq \delta \). By an easy computation, \(\alpha_{\lambda}(g)x_{B} = x_{B_{\lambda}} \), the characteristic function on \(B_{\lambda} \) where \(B_{\lambda} \) is the translation of \(B \) by a vector \(-\lambda\varphi(g)^{\lambda^{-1}} \). Note \(-\lambda\varphi(g)^{\lambda^{-1}} = -\lambda\pi(g^{-1})(\varphi(g)) \) has norm \(\|\lambda\varphi(g)\| \). If \(\|\lambda\varphi(g)\| \geq 1 \), \(B \cap B_{\lambda} = \emptyset \), hence \(\|\alpha_{\lambda}(g)x_{B} - x_{B}\| = \sqrt{2} > 2\sqrt{\varepsilon} \). However

\[\|\alpha_{\lambda}(g)x_{B} - x_{B}\| < 2\sqrt{\varepsilon} \quad \text{for all} \quad g \in G \]

and \(0 \leq \lambda \leq \delta \). It follows that \(\|\delta\varphi(g)\| < 1 \) for all \(g \in G \). Hence \(\varphi(G) \) is bounded in \(R^{n} \).

As a consequence of Lemmas 1 and 4, we now have our main result.

Theorem A. Let \(G \) be a separable locally compact group with property (T) and \(\pi: G \to O_{n} \) a continuous representation. Then \(H^{1}(G, \pi) = 0 \).

As an application of Theorem A, we have the following vanishing cohomology theorem of certain discrete subgroups.

Theorem B. Let \(k \) be a nondiscrete locally compact field of \(\text{ch}(k) = 0 \), \(G \) an affine semisimple algebraic group defined over \(k \) and \(\Gamma \) a discrete subgroup of \(G(k) \). If the \(k \)-rank of each \(k \)-factor of \(G \geq 2 \) and \(G(k)/\Gamma \) has a finite Haar measure, then \(H^{1}(\Gamma, \pi) = 0 \) for every finite dimensional unitary representation \(\pi \) of \(\Gamma \).

Proof. By [4], \(\Gamma \) has property (T).

Theorem B generalizes slightly Theorem 6.5 in [3]. However our method cannot be carried out in higher dimensional cohomology groups. In the following, we present a weak rigidity theorem for discrete groups with property (T).

Theorem C. Let \(\Gamma \) be a finitely generated discrete group with property (T), \(G \) a compact Lie group, and \(\varphi_{\lambda}: \Gamma \to G \) (0 \leq \lambda \leq 1) a continuous curve of homomorphisms. Then for each \(\lambda \), there is \(g_{\lambda} \in G \) such that \(\varphi_{\lambda}(\gamma) = g_{\lambda}\varphi_{0}(\gamma)g_{\lambda}^{-1} \) for all \(\gamma \in \Gamma \).

Proof. Let \(n \) be a positive integer. From [7], we know that there are only finitely many classes of irreducible unitary representations of \(\Gamma \).
with dimension \(\leq n \). Let \(N_j = \text{kernel}(\varphi_j) \). Then the set of kernels \(\{N_j : 0 \leq \lambda \leq 1\} \) is finite. Let us denote this finite set by \(\{M_j, \cdots, M_l\} \). Let \(I_i = \{\lambda : N_\lambda = M_i\} \). We want to show that \(I_i \) (\(i = 1, \cdots, l \)) are closed subsets of \([0, 1]\). Let us write \(\Gamma_i \) for \(\Gamma/M_i \). Clearly if \(\lambda \in \text{Cl}(I_i), N_\lambda \supset M_i \). Hence for each \(\lambda \in \text{Cl}(I_i) \), we set \(\tilde{\varphi}_\lambda \) for the homomorphism of \(\Gamma/M_i \) induced by \(\varphi_\lambda \). Let \(\mathcal{R}(\Gamma_i, G) \) be the space of all representations of \(\Gamma_i \) in \(G \). We equip \(\mathcal{R}(\Gamma_i, G) \) with the compact open topology. \(G \) acts continuously on \(\mathcal{R}(\Gamma_i, G) \) by \((g \circ \varphi)(\gamma) = g\varphi(\gamma)g^{-1}, \varphi \in \mathcal{R}(\Gamma_i, G), \gamma \in \Gamma_i \) and \(g \in G \). By Theorem A and [8], \(G \circ \tilde{\varphi}_\lambda, (\lambda \in I_i) \) are open subsets of \(\mathcal{R}(\Gamma_i, G) \). Since \(G \) is compact, \(G \circ \tilde{\varphi}_\lambda, (\lambda \in I_i) \) are compact-open in \(\mathcal{R}(\Gamma_i, G) \). On the other hand \(\mathcal{R}(\Gamma_i, G) \) can be viewed as an \(R \)-algebraic variety. It follows that \(\mathcal{R}(\Gamma_i, G) \) has only finitely many arcwise connected components [9]. Hence

\[
\bigcup_{\lambda \in I_i} G \circ \tilde{\varphi}_\lambda = \bigcup_{j=1}^m G \circ \varphi_{\lambda_j}
\]

for some finitely many elements \(\lambda_1, \cdots, \lambda_m \) in \(I_i \), and consequently

\[
\bigcup_{\lambda \in I_i} G \circ \tilde{\varphi}_\lambda \text{ is compact-open in } \mathcal{R}(\Gamma_i, G).
\]

Therefore \(\text{Cl}(I_i) = I_i \) (\(i = 1, \cdots, l \)) and \(l \) has to be 1. Again by Theorem A and [8] \(G \circ \tilde{\varphi}_0 \) is compact-open in \(\mathcal{R}(\Gamma_1, G) \). Since \(\{\tilde{\varphi}_\lambda: 0 \leq \lambda \leq 1\} \) is connected, one concludes readily that \(\tilde{\varphi}_\lambda \in G \circ \varphi_0 \) for all \(\lambda \). Therefore \(\varphi_\lambda \in G \circ \varphi_0 \) for all \(\lambda \).

REFERENCES

DEPARTMENT OF MATHEMATICS, STATE UNIVERSITY OF NEW YORK, STONY BROOK, NEW YORK 11790

Current address: Department of Mathematics, Purdue University, Lafayette, Indiana 47907

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use