ON CLOSED SETS OF ORDINALS

HARVEY FRIEDMAN

Abstract. We prove that every stationary set of countable ordinals contains arbitrarily long countable closed subsets.

Call a set A of ordinals closed if and only if every nonempty subset of A which has an upper bound in A has its least upper bound in A. It is well known that there are $B \subseteq \omega_1$ such that neither B nor $\omega_1 - B$ contains an uncountable closed subset. A consequence of what we prove here is that for every $B \subseteq \omega_1$, either B or $\omega_1 - B$ contains arbitrarily long countable closed subsets.

Call a set A of ordinals κ-stationary if and only if $A \subseteq \kappa$ and A intersects every closed subset of κ of power κ. We can restate the above well-known theorem as follows: There is an A such that A and $\omega_1 - A$ are both ω_1-stationary.

We will prove here that every ω_1-stationary set contains arbitrarily long, countable, closed subsets.

Is there a cardinal κ such that for all $A \subseteq \kappa$, either A or $\kappa - A$ contains an uncountable closed subset? Is this true for $\kappa = \omega_2$? Karel Prikry and the author noticed that, in any case, the statement for $\kappa = \omega_2$ cannot be proved true in ZFC.

Theorem. Every ω_1-stationary set contains arbitrarily long countable closed subsets.

Proof. Let A be ω_1-stationary. We prove by induction on $\alpha < \omega_1$ that A has a closed subset of length α. Let the induction hypothesis be that

Received by the editors November 30, 1972.

AMS (MOS) subject classifications (1970). Primary 04A20; Secondary 02K02, 02K35.

Key words and phrases. Ordinals, cardinals.

1 The writing of this paper was partially supported by NSF grant GP-34091X.

The Theorem was obtained in 1968.

2 In fact, Solovay [1] proves that for uncountable regular cardinals κ, every κ-stationary set is the union of κ disjoint κ-stationary sets.

3 By adding an $f: \omega_2 \rightarrow \{0, 1\}$ generic with respect to the partial ordering of countable partial $g: \omega_2 \rightarrow \{0, 1\}$. If the ground model satisfies $\text{ZFC} + 2^{\omega_0} = \omega_1$, then in the forcing extension cardinals are preserved, $\{\alpha: f(\alpha) = 1\}$ and $\{\alpha: f(\alpha) = 0\}$ contain no uncountable closed subsets, and $2^{\omega_0} = \omega_1$ holds.

© American Mathematical Society 1974
for all \(\beta < \alpha \) and for each \(\gamma < \omega_1 \), there is a closed subset \(B \subseteq A \) of length \(\beta \), all of whose elements are \(> \gamma \).

Case 1. \(\alpha \) is a limit ordinal \(< \omega_1 \). Choose \(\beta_0 < \beta_1 < \cdots < \alpha \), with \(\sup_n (\beta_n) = \alpha \). Let \(\gamma < \omega_1 \). By the induction hypothesis, let \(B_0 \subseteq A \), \(B_0 \) of length \(\beta_0 + 1 \), \(B_0 \) closed, \((\forall \beta \in B_0) (\beta > \gamma) \). Let \(B_{n+1} \subseteq A \), \(B_{n+1} \) of length \(\beta_{n+1} + 1 \), \(B_{n+1} \) closed, \((\forall \beta \in B_{n+1}) (\beta > \sup(B_n)) \). Then set \(B = \bigcup_n B_n \). \(B \) has the desired properties.

Case 2. \(\alpha = \delta + 2 \), \(\alpha < \omega_1 \). Let \(\gamma < \omega_1 \). By the induction hypothesis, let \(B_0 \subseteq A \) be closed, of length \(\delta + 1 \), and \((\forall \beta \in B_0) (\beta > \gamma) \). Let \(\lambda \in A \) with \(\lambda > \sup(B_0) \). Put \(B = B_0 \cup \{ \lambda \} \). \(B \) has the desired properties.

Case 3. \(\alpha = \lambda + 1 \), \(\lambda \) a limit ordinal \(< \omega_1 \). Let \(\gamma < \omega_1 \). By the induction hypothesis, define a sequence of sets \(B_1, \xi < \omega_1 \), such that

1. \((\forall \beta \in B_0) (\beta > \gamma) \)
2. if \(\xi_1 < \xi_2 \) then \((\forall \beta_1 \in B_{\xi_1})(\forall \beta_2 \in B_{\xi_2})(\beta_1 < \beta_2) \)
3. each \(B_\xi \) is a closed subset of \(A \) of length \(\lambda \).

Define \(f : \omega_1 \to \omega_1 \) by \(f(\xi) = \sup(\bigcup_{\xi < \xi} B_{\xi}) \). Note that the range of \(f \) on limit ordinals is an uncountable closed set. Since \(A \) is stationary, let \(\tau \) be a countable limit ordinal with \(f(\tau) \in A \). Choose \(\tau_0 < \tau_1 < \cdots < \tau \) with \(\sup_n (\tau_n) = \tau \). Let \(C_n \) be the first \(\lambda_n + 1 \) elements of \(B_{\tau_n} \). Then set \(B^* = \bigcup_n C_n \). \(B^* \) is a closed subset of \(A \) of length \(\lambda \), and \(\sup(B^*) = f(\tau) \in A \). Hence \(B = B^* \cup \{ f(\tau) \} \) is a closed subset of length at least \(\alpha \), all of whose elements are \(> \gamma \), and we are done.

The referee has kindly forwarded the following remarks concerning the problems raised on the first page of this paper.

Let us say that a cardinal \(K > \omega \) has the property \(F \) (briefly, \(F(K) \)) if for every subset \(A \) of \(K \) either \(A \) or \(K \setminus A \) contains a closed subset of order type \(\omega_1 \).

1. Silver has shown that the Jensen principle \(\Box_{\omega_1} \) implies \(\neg F(\omega_2) \). Since \(\neg \Box_{\omega_1} \to \omega_2 \) is Mahlo in \(L \) this gives a lower bound on the proof-theoretic strength of \(ZFC + F(\omega_2) \).

2. Silver has also observed that in any Cohen extension of any model \(M \) of \(ZFC \) obtained by generically collapsing \(\omega_1^M \) to \(\omega \), \(F(K) \) fails for all uncountable \(M \)-cardinals \(K \). (For \(A \) take \(\{ \alpha : cf^M(\alpha) = \omega \) and \(\alpha < K \} \).)

3. Solovay has generalized Silver's proof in (1) above to show that, in \(L \), \(F(K) \) fails for all cardinals \(K > \omega \).

Karel Prikry has informed the author that he has independently shown that \(F(K) \) fails for all cardinals \(K > \omega \), in \(L \).

Department of Mathematics, Stanford University, Stanford, California 94305

Department of Mathematics, State University of New York at Buffalo, Amherst, New York 14226